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SUMMARY OF ACCOMPLISHMENTS 

Part 1: Composite materials experience complex evolution of damage even under static loading 
conditions. These damage events are associated with acoustic emission signals and such events 
have been extensively studied in the past to identify the different types of failure modes. A set of 
cross-ply and quasi-isotropic coupon specimens were instrumented with a configuration of sensors 
that are likely to preserve the acoustic emission features. These specimens were then tested under 
quasi-static tensile load to failure. Damage events such as matrix cracks, delamination, and 
scattered fiber breaks occurred throughout the loading cycles. Typically, several tens of thousands 
of acoustic emission events were recorded during each of these coupon tests. Features of acoustic 
emission signals corresponding to different types of damage events were examined. These include 
features such as frequency content and duration. The features were further analyzed to relate 
acoustic emission signals with likely failure modes based on the stress levels in the laminates. In 
addition, features that are indicators of the static strength in the presence of the accumulated 
damage are also examined. Based on these analyses the features of critical damage events are 
identified. 
 
Part 2: The objective of this paper is to develop a technique capable to providing timely warning 
of the onset of critical damage events that precede the catastrophic failure of composite specimens. 
The sequential failure of 10 or more adjacent fiber breaks are known to trigger the final fracture 
of composite structural elements. In this paper, the detection of the formation of such critical 
clusters of fiber breaks among the millions of damage events that include matrix cracks, 
delamination, and individual fiber breaks, is shown to be feasible through statistical analysis of 
acoustic emission waveforms.  

Acoustic emissions released during static loading of [0/90]3S cross-ply and [+45/90/-
45/0]2S quasi-isotropic specimens were examined in detail for a large number of specimens. Matrix 
cracks, delaminations, and scattered fiber breaks occurred throughout the loading cycle, attempts 
to relate the features of acoustic emission signals such as amplitudes, frequency content, and 
duration were not successful. The focus was turned to isolating acoustic emission signals from the 
critical clusters of fiber breaks. The analysis presented here is based on the hypothesis that nearly 
collocated and similar microscopic failure events will result in identical acoustic emission 
waveforms. Since AE waveforms are determined by relative location of the source with respect to 
the sensor as well as the intervening medium, AE signals from members of a cluster, that occur in 
close succession, will have identical waveforms. AE waveforms from each group are expected to 
have a unique signature. 

This hypothesis was tested on a number of cross-ply and quasi-isotropic specimens and 
groups of nearly identical AE signals were found to follow each other after 85% of ultimate load, 
and their numbers were found to increase exponentially with further increase in load.  The tens of 
thousands of AE waveforms recorded for each specimen were analyzed using cross correlation to 
isolate groups within which signals were identical.  On the average, the final catastrophic failure 
of the specimen followed immediately after a group in which 15 identical waveforms were seen.  
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For most specimens, the location of final failure coincided with the location from which such 
identical AE signals were received. 

 
Part 3: Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced 
Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation 
coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were 
determined experimentally along different directions for the two types of CFRP panels. In the 
frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes 
due to material related attenuation compared to the S0 mode. Moderate to strong changes in the 
attenuation levels were also noted with propagation directions. Such mode and frequency 
dependent attenuation introduces major changes in the characteristics of AE signals depending on 
the position of the AE sensor relative to the source. Results from finite element simulations of a 
microscopic damage event in the composite laminates are used to illustrate attenuation related 
changes in modal and frequency components of AE signals.  
 
Part 4: The relationship between characteristic features of acoustic emission (AE) signals and 
crack growth in Aluminum panel is examined in this paper. AE signals from fatigue crack growth 
in an Al 6061 plate with edge notch were collected by means of wideband AE sensors. 
Distributions of cumulative and individual characteristic features of the signals were evaluated. 
The signal waveforms were correlated among each other to identify features which were sensitive 
to crack growth. It was found that the amplitude and duration features were indicative of changes 
in the crack growth rate. The correlations among the waveforms indicated that the amplitudes of 
the antisymmetric (A0) wave components of the signal waveforms increase as the crack length 
increases. Such characterizations of crack related signals are useful in AE based structural health 
monitoring applications. 
 
Part 5: The objective of the work performed under this section is to better understand important 
aspects of AE signal generation, propagation, and detection, so as to better relate AE parameters 
with fatigue crack growth in critical aircraft structures. We analyze the characteristics of crack 
related signals in thick and complex structures and develop models that accurately capture the 
physics of AE signal generation during incremental crack growth. 
 
Part 6: The article demonstrates an ab-initio configuration of piezoelectric sensors to capture shear 
horizontal components of the acoustic emission waveform. The acoustic emissions from simulated 
crack growth and incremental crack growth in a cyclically loaded aluminum panel were detected 
by various acoustic emission sensors. Thereby, the devised sensor performance was assessed in 
comparison to other bonded piezoelectric sensors and resonant frequency acoustic emission 
sensors. Variation of the waveforms as a function of the location of the sensor with respect to the 
source event was considered. Additionally, advantages of Horizontal-shear wave above A0 and S0 
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are discussed to show the need of engineered sensors sensitive to detect shear horizontal waveform 
related to acoustic emission signals.  
 
Part 7: Acoustic emission signals generated by sliding friction between two flat steel surfaces are 
characterized. A test fixture to simulate the reciprocating motion between the two surfaces under 
controlled conditions is developed. Sliding friction under several combinations of surface 
roughness, relative velocity, and normal pressure was examined. Wideband AE sensors and 
instrumentation were used for acquiring and analyzing the acoustic emission signals. Acoustic 
emission events occurred primarily during the slip portion of the stick-slip cycles. AE waveform 
features obtained during these experiments were indicative of the tribological conditions. 
Frequency components in excess of 700 kHz were seen during these experiments. The 
characteristics of the experimentally observed acoustic emission signals were in general agreement 
with earlier numerical predictions. Friction related acoustic emission signals were distinguishable 
from those from other sources such as fatigue crack growth. The characterization of friction related 
acoustic emission signals is likely to be of value in many tribological and structural health 
monitoring applications. 
 
Part 8: We report on work that is part of the development of an agent-based structural health 
monitoring system. The data used are acoustic emission signals, and we classify these signals 
according to source mechanisms, those associated with crack growth being particularly significant. 
The agents are proxies for communication- and computation-intensive techniques and respond to 
the situation at hand by determining an appropriate constellation of techniques. It is critical that 
the system have a repertoire of classifiers with different characteristics so that a combination 
appropriate for the situation at hand can generally be found. We use unsupervised learning for 
identifying the existence and location of damage but supervised learning for identifying the type 
and severity of damage. The supervised learning techniques investigated are support vector 
machines (SVM), naive Bayes classifiers, and feed-forward neural networks (FNN). The 
unsupervised learning techniques investigated are k-means (with k equal to 4, 5, and 6) and self-
organizing maps (SOM, with 4, 5, and 6 output neurons). For each technique except SOM, we 
tested versions with and without principal component analysis (PCA) to reduce the dimensionality 
of the data. We found significant differences in the characteristics of these machine learning 
techniques, with a general trade-off between accuracy and fast classification runtime. This trade-
off can be exploited by the agents in finding appropriate combinations of classification techniques. 
The approach followed here can be generalized for exploring the characteristics of machine-
learning techniques for monitoring various kinds of structures. 
 
Part 9: The overall architecture involves motes (battery-powered devices with processors, 
memory, attached sensors. And wireless communication capability) that feed data streams to 
workstations on which a multiagent system allocates resources to interpret and fuse the data.  Agent 
services are made available as Web services, resulting in an end-to-end architecture, extending 
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from the sensors to the users consuming the information to support decisions.  Prototypes have 
been developed for interpreting individual datastreams, for hierarchical integration of monitoring 
agents, and for publishing status and alerts on the Web and rendering them on a user’s 
“dashboard.”   
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PART 1: CHARACTERIZATION OF ACOUSTIC EMISSION EVENTS FROM 

DAMAGE IN COMPOSITES  

Abstract 

Composite materials experience complex evolution of damage even under static loading 
conditions. These damage events are associated with acoustic emission signals and such events 
have been extensively studied in the past to identify the different types of failure modes. A set of 
cross-ply and quasi-isotropic coupon specimens were instrumented with a configuration of sensors 
that are likely to preserve the acoustic emission features. These specimens were then tested under 
quasi-static tensile load to failure. Damage events such as matrix cracks, delamination, and 
scattered fiber breaks occurred throughout the loading cycles. Typically, several tens of thousands 
of acoustic emission events were recorded during each of these coupon tests. Features of acoustic 
emission signals corresponding to different types of damage events were examined. These include 
features such as frequency content and duration. The features were further analyzed to relate 
acoustic emission signals with likely failure modes based on the stress levels in the laminates. In 
addition, features that are indicators of the static strength in the presence of the accumulated 
damage are also examined. Based on these analyses the features of critical damage events are 
identified. 

1.1 Introduction 

The useful life of composite components is affected by damage progressing in different 
failure modes. These modes include fiber breaking, matrix cracking, and delamination. Unlike 
monolithic materials, the damage progression is not characterized by growth of a single crack 
initiating from highly stressed sections of the member. The progression of damage in composites 
is characterized by distributions of the different failure modes over the dimensions of the laminates 
[1]. 

Some of these failure modes have substantial effect on the strength and durability of 
composite components, while others are considered non-critical [2]. These failure modes tend to 
occur at different stages of a loading cycle. At lower load levels, matrix cracks appear over the 
entire volume of the specimen, affecting the stiffness of a laminate. As the load increases further, 
delaminations and fiber breaks occur. The accumulation of these two modes is likely to lead to the 
final failure of the component. 

Any sudden structural change in the composite laminates such as matrix cracking and fiber 
breaks produces stress waves which propagate in the structure. These waves, i.e. acoustic 
emissions (AE), depend on the type of source mechanism and also provide information regarding 
the type of failure mode. The different failure modes in composites are likely to result in AE signals 
with different features.  

AE data obtained from failure processes under different kinds of tests can be analyzed to 
differentiate the mechanisms involved. Several researchers used this advantage to investigate the 
different mechanisms of failure using AE data. An extensive review [3] highlights three major 
areas of AE research related to composite materials. These include interface studies in single fiber 
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composites, damage evolution, and detection of failure mechanisms. A study of damage 
accumulation in quasi-statically loaded composite specimens using wavelet analysis of acoustic 
emission signals was used to obtain frequency and time information related to different failure 
mechanisms [4]. Features such as amplitude, number of AE events, cumulative AE energy and 
peak frequency have also been used for clustering AE data obtained from tensile tests [5]. Debonds 
between fiber and matrix material has also been characterized using the amplitude and frequency 
of the signals [6].An attempt has also been made to examine evolution of microdamage in 
composites experimentally using a combination of AE classification and multi-parameter filtering 
[7].Various damage mechanisms which occur during bucking of a composite laminate has also 
been studied. Two main damage mechanisms believed to be matrix cracking and delamination 
were indicated by three classification algorithms implemented by the authors. Ultrasonic C-Scan 
and digital image correlation were also implemented [8]. 

This paper examines the possibility of identifying the failure mode from the distinct 
features of the resulting acoustic emission signal. The details of the experimental works, results 
and discussion of the results are presented in the following sections. 

 

1.2 Experiments 

Tensile test specimens were cut from carbon fiber reinforced plates according to ASTM 
Standard D3039. These specimens were subjected to quasi-static loading up to fracture. Thousands 
of AE events were generated by these tests. These signals were later analyzed to identify clusters 
corresponding to failure mechanisms. 

 
1.2.1Test specimens 

A total of two quasi-isotropic and two cross-ply specimens were used. The stacking 
sequences for the cross-ply and the quasi-isotropic laminates were [0/90]3s and [+45/90/−45/0]2s, 
respectively. The dimensions for the tension test specimens from both types of specimens for the 
cross-ply and quasi-isotropic laminates were 300 mm× 25 mm × 1.8 mm and 300 mm× 25 mm × 
2.4 mm, respectively. The fiber volume ratio for the specimens was determined to be 0.65. Table 
I shows the loads at which fracture occurred in each of the specimens. 

 
Table 1. Loads at which fracture occurred 

Test Load at failure (x103N) 

Q6 41.8 

Q7 39.1 

CP1 43.5 

CP3 39.4 

 
The influence of the propagation medium on the detected signals can affect the success of 

relating the acoustic emission signals to the type of the source giving rise to these signals. Recently 
the influence of mode and frequency dependent attenuation of acoustic emission signals 
propagating in composite laminates were examined in detail [9]. Based on this information, the 
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specimens were instrumented with a configuration of sensors that are likely to preserve the 
acoustic emission features. Four rectangular piezoelectric (PZT) wafers were bonded to the surface 
of the plate to detect the AE signals originating from the various failure modes. These sensors were 
capable of frequency response in excess of 1.5 MHz. 

Because of the dense array of sensors used, it was possible to detect the high frequency 
components of AE signals which otherwise would have been lost because of attenuation. It was 
also feasible to locate the AE sources better with these sensors.  The layout of the sensors is shown 
in figure 1. The signals from the transducers were amplified by Physical Acoustics Corporation 
PAC 2/4/6 preamplifiers at 40 dB gain and 50 kHz high pass filters. A 40 dB threshold was set 
while acquiring the AE signals. The signals from the four channels were recorded by PCI-2 data 
acquisition system at a rate of 10 x 106 samples/second. The waveforms were recorded for a length 
of 512 μs  and contained a total of 5120 data points per waveform.  

 

 
 

Figure 1. Sensor arrangement in the specimens 
 

1.3 Results and discussion 

The number of AE signals acquired during the loading sequence varied from one test to 
another. Typical acquisition rates of a channel for the quasi-isotropic and the cross-ply coupon 
tests are shown in figure 2. The number of detected hits varies widely depending on the relative 
location of the damage events and the sensors. On the average, 25,000 waveforms are sensed by 
the 4 channels. The sensor closest to the locations of most of the damage events picks 30 to 40% 
of the total number of hits. 

In quasi-isotropic specimens, AE event rate or the number of AE signals captured for a unit 
load increment, was relatively low until about 85% of the maximum load, and beyond this point, 
event rate increased exponentially. The cross-ply tests showed initially had a high AE rate followed 
by modest rate. During the last 15% of the loading cycle there was an exponential increase in the 
AE rate. Physical observation of the failure shows more delamination in the quasi-isotropic 
laminates as compared to the cross-ply specimen. Figure 3 shows images of the cross-ply and 
quasi-isotropic specimens after failure. 
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(a) (b) 

 
Figure 2. Cumulative AE hits for quasi-isotropic specimen (a) and cross-ply specimen (b) 

 
 

  

(a) (b) 

 
Figure 3. Failure region of (a) Cross-ply specimen   (b) Quasi-isotropic specimen 

 

1.3.1 AE Features and wavelet transform 

The frequency contents of the AE signals were identified by wavelet diagrams obtained 
using AGU Vallen wavelet software. The signals were located to ensure that signals from the 
failure region were duly analyzed. As observed from the physical examination of failed specimens, 
the failure mechanism for the cross-ply specimens was predominantly fiber fracture and that for 
the quasi-isotropic specimens was a mix of delamination and fiber break, with delamination being 
more dominant. These respective failure mechanisms are expected of these layups. 

Results of analyzing the wavelet transforms of signals from the failure zone of the tests 
showed some relation between the types of signals and the observed failure mechanisms. Matrix 
cracking was detected in both specimens early on in the loading sequence during the early sharp 
rise in AE events acquisition rate (up to 20% of the load level). The signals related to matrix cracks 
tend to have relatively low frequency components and dominant antisymmetric wave propagation 
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components. The amplitudes were relatively large. Figure 4 shows a waveform and wavelet 
transform of such a signal obtained during the early stages of the loading cycle. 

 

 
 

Figure 4. Wavelet transform of signal occurring at 50% of failure load in a cross-ply specimen , likely 
from a matrix crack. 

 
A very small fraction of the signals recorded in cross-ply specimens, around 20% of final 

fracture had features similar to the waveform shown in figure 5. In comparison, most of the signals 
generated above 85% of final fracture load, were similar to the one shown in figure 6. Both of 
these signals have frequency components in excess of 1.5 MHz and duration of roughly 25 to 50 
μs. The short duration and high frequency content in these signals are likely to have resulted from 
fiber breaks. The signals, in figure 6, generated at high load levels have much larger amplitudes as 
those, in figure 5, as expected.  

 

 
 

Figure 5.Wavelet transform of signal from early fast AE acquisition rate – early fiber break source 
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Figure 6.Wavelet transform of signal from near failure – late fiber break source 
 

In tests on quasi-isotropic specimens, there were a significant number of long duration, low 
frequency signals. The distinctive feature of these signals is a strong presence of antisymmetric 
components, as seen in figure 7. These signals are likely related to delaminations which occurs 
over a relatively larger area/volume. 

 

 
 

Figure 7. Wavelet transform of signal from zone near failure –corresponding to delamination 
 

1.4 Summary 

In this paper, the features of AE signals were analyzed and related to the damage 
mechanism from which the signals originate. The analysis showed that critical events like 
delamination and fiber breaks occur close to the final failure. Delamination is characterized by low 
frequency, long duration signals dominated by anti-symmetric mode. Such signals were found in 
greater number in quasi-isotropic specimens than in the cross-ply specimens. Fiber breaks are 
characterized by short duration, high frequency signals with almost no anti-symmetric component. 

Non-critical damage events related to matrix cracks occur in the early life of the coupon. 
AE from matrix crack growth have low frequency signals often with anti-symmetric components. 
These results can help in identifying failure modes during AE based structural health monitoring 
of composite materials. 
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PART 2: CLUSTERING OF FIBER BREAK RELATED EVENTS IN CARBON FIBER 

REINFORCED POLYMER COMPOSITES USING ACOUSTIC EMISSION 

Abstract 

The objective of this paper is to develop a technique capable to providing timely warning 
of the onset of critical damage events that precede the catastrophic failure of composite specimens. 
The sequential failure of 10 or more adjacent fiber breaks [1-6] are known to trigger the final 
fracture of composite structural elements. In this paper, the detection of the formation of such 
critical clusters of fiber breaks among the millions of damage events that include matrix cracks, 
delamination, and individual fiber breaks, is shown to be feasible through statistical analysis of 
acoustic emission waveforms.  

Acoustic emissions released during static loading of [0/90]3S cross-ply and [+45/90/-
45/0]2S quasi-isotropic specimens were examined in detail for a large number of specimens. Matrix 
cracks, delaminations, and scattered fiber breaks occurred throughout the loading cycle, attempts 
to relate the features of acoustic emission signals such as amplitudes, frequency content, and 
duration were not successful. The focus was turned to isolating acoustic emission signals from the 
critical clusters of fiber breaks. The analysis presented here is based on the hypothesis that nearly 
collocated and similar microscopic failure events will result in identical acoustic emission 
waveforms. Since AE waveforms are determined by relative location of the source with respect to 
the sensor as well as the intervening medium, AE signals from members of a cluster, that occur in 
close succession, will have identical waveforms. AE waveforms from each group are expected to 
have a unique signature. 

This hypothesis was tested on a number of cross-ply and quasi-isotropic specimens and 
groups of nearly identical AE signals were found to follow each other after 85% of ultimate load, 
and their numbers were found to increase exponentially with further increase in load.  The tens of 
thousands of AE waveforms recorded for each specimen were analyzed using cross correlation to 
isolate groups within which signals were identical.  On the average, the final catastrophic failure 
of the specimen followed immediately after a group in which 15 identical waveforms were seen.  
For most specimens, the location of final failure coincided with the location from which such 
identical AE signals were received. 

2.1 Introduction 

Damage progression in carbon fiber reinforced composites is known to occur in stages and 
involves several failure mechanisms (e.g., matrix cracking, fiber breakage, and delamination). The 
presence of certain mechanisms may give an indication on where along the failure process the 
material currently is. Each mechanism has a unique physical process in terms of duration and 
energy release rate which should produce distinct AE signals. The subtle differences in AE signals 
have been a focus for distinguishing the failure modes. Liu [7] and Mechraoui [8] studied the 
various failure mechanisms using primarily AE amplitude with each mechanism occupying a 
distinct amplitude range but noted that amplitude values will depend on the material system. Yu 
[9] looked at specific frequency values to monitor failure in carbon reinforced composite 
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specimens. Bussiba [10] showed that not only do the different failure modes generate unique 
frequencies but they also have noticeably different durations. Fiber breaks are very short duration 
events and are known to give rise to relatively high frequency content [11]. However, examining 
a given parameter may not provide sufficient information regarding the source [12] since the 
failure modes may occupy common parameter regimes. 
 The various failure modes have different effects on the integrity of the structure and can 
potentially be classified as either critical or non-critical damage. This ultimately depends on the 
make-up of the composite which dictates the failure process. Damage initiation and progression in 
fiber reinforced composites have been well studied in the past with several techniques utilizing 
micromechanics based models to predict the behavior of the material under certain load conditions. 
Ogi [13] developed a probabilistic model to predict transverse matrix crack in cross-ply panel and 
compared it to experimental results. Wharmby [14] related the transverse crack density to changes 
of the elastic modulus which is more drastic in the absence of 0˚plies. It was noticed that the 
majority of the stiffness reduction occurred within the first 10% of the normalized life. Acoustic 
energy can also be a useful parameter to study damage progression. High energy events may 
signify significant damage growth which can be captured and characterized using acoustic 
emission techniques. Using cumulative AE energy was shown to agree well with C-scanning and 
microscopic analysis when monitoring damage accumulation [15]. Such methods have been shown 
to sufficiently capture the material behavior as long as the stress state information can be 
determined. However, there has not been a technique that focuses on identifying the onset of 
critical damage in real time. Even AE techniques, which attempt to distinguish between the 
different failure modes in real time, do not differentiate between non-critical and critical damage 
growth. For this study, critical damage is defined as that which indicates or precedes final failure. 
 Filtering out inconsequential signals not only allows for greater emphasis to be placed on 
important events but also addresses the data management issue associated with AE in 
unidirectional composite materials. Unidirectional composites are profuse emitter of acoustic 
emissions and can produce tens of thousands of signals during a simple coupon test. This can be 
counteracted by raising the trigger threshold to decrease the AE hit rate. Consequently, lower 
amplitude signals will be missed as a result. Under the assumption that critical damage signals 
start with low energy, ignoring lower amplitude signals may limit the ability to detect the early 
onset of critical damage growth. With a filter, all relevant signals across the entire amplitude 
spectrum can be analyzed and also stored for later processing if necessary. The volume of AE data 
generated during testing, primarily for fatigue, may restrict the acquisition parameters used or the 
test duration. Ultimately, this process is a balance between determining the minimum 
amplitude/energy of relevant signals and staying below the maximum number of signals capable 
of being analyzed by post-processing software. 
 This work utilizes a cross-correlation technique as a filter to discriminate between non-
critical and critical damage in carbon fiber-reinforced polymer (CFRP) panels while accounting 
for relevant low energy signals. Cross-ply and quasi-isotropic specimens were cut from laminates 
developed at NASA Armstrong Flight Research Center. The layups of the laminates were designed 
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to resemble those of carbon fiber composites used in current aerospace structures. Damage 
evolution as it transitions from insignificant crack growth to meaningful damage was investigated 
using AE techniques. 

2.2 Experimental 

Each panel was made by stacking unidirectional tape to achieve a desired layup. After each 
lamina were positioned and vacuumed bagged, they were heated 2°F/min to 250°F, held at that 
temperature for one hour then cooled at room temperature. ASTM tension test standard D3039 
was used to determine the dimension of each rectangular specimen which was 25 mm x 275 mm 
long. The gage length varied between 75 and 150 mm and piezo-electric wafer sensors were 
bonded adhesively on both ends of the gage section while ultrasonic transducers were attached 
outside the gage to function as guard sensors. The frequency responses for the PZT sensors and 
ultrasonic transducers were 100 to 700 kHz and 100 to 400 kHz, respectively. Wideband PAC 
2/4/6 preamplifiers were used and the 40 dB setting was typically used for both static and fatigue 
tests. All AE data was recorded on a 4-channel PCI-2 AE system. 

The specimens were loaded using a hydraulic testing machine. Quasi-static tests were done 
at a rate of 167 lbs/min to ensure a sufficient number of AE events would be captured to 
characterize the separate failure regions. Lead breaks were done to ensure each sensor had similar 
frequency responses and sensitivity. Also, the time of flight of signal from one sensor to the next 
can be measured and used to calculate the speed of sound (velocity) of the signal, which is useful 
in determining source location.   

 

  
 

Figure 1. Tensile specimen dimensions (left), specimen during testing. 

2.3 Methodology 

PZT sensors 

Extensometer 
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Each static test is capable of generating tens of thousands of signals depending on 
parameters such as threshold value, sensor sensitivity, and failure process of the material. Several 
signal processing techniques can be used to filter and isolate various types of signals. This study 
utilized a cross-correlation to extract important signals based on the density of signals generated 
in a particular area over a set period of time. This approach relates an area where a high density of 
similar AE signals is being generated to critical localized damage growth. Localized damage 
growth is considered to be where a given source mechanism continuously grows or happens within 
a relatively small area or volume. In such case, that mechanism should produce repetitive signals 
as long as there has not been a drastic change in the medium. A focus is placed on critical localized 
damage, such as fiber breaks, that significantly reduces the strength of the component. It is known 
that a fiber breakage causes stress redistribution into neighboring fibers which may fail if their 
ultimate strength is exceeded [16]. These neighboring fibers simultaneously fail in groups, or i-
plets, at high load [1, 3, 6]. This behavior has been captured in great detail using computed 
tomography [4]. Capturing the failure of these i-plets in terms of AE clusters can provide great 
insight on the damage state of the material in real-time. Also, given that composites may begin to 
fail in randomly, such a technique may be able to distinguish between separate localized damage 
areas. 

The correlation process relies on raw waveform data captured by the individual sensors to 
determine location and various AE parameters (duration, frequency, energy, etc.). Typical AE 
software calculates such information but analyzing waveform data using MATLAB was found to 
be more sufficient. The cross-correlation technique used to compare separate data sets is shown 
below in Eqs. 1 and 2. 

 
 

1) 𝑅𝑥𝑦(𝑚) = 𝐸{𝑥𝑛+𝑚𝑦𝑛
∗ } = 𝐸{𝑥𝑛𝑦𝑛−𝑚

∗ } 

2) �̂�𝑥𝑦(𝑚) = {
∑ 𝑥𝑛+𝑚𝑦𝑛

∗            𝑚 ≥ 0𝑁−𝑚−1
𝑛=0

�̂�∗
𝑥𝑦(−𝑚)                     𝑚 < 0  

 

𝑐(𝑚)=�̂�𝑥𝑦(𝑚 − 𝑁)               𝑚 = 1,2, … 2𝑁 − 1 

If there are two continuous functions representing waveform data, x and y, there will be an 
expected value, E, resulting from comparing the two functions. The variable m is the lag or shift, 
and the output is the correlation array, c. Each correlation value corresponds to a lag value and the 
degree of how similar two waveforms are can be found by finding the maximum value of c. A 
visual representation of how this technique works is shown in Fig. 1. The first signal detected by 
each signal serves as the initial reference signal and the following signals that fall within a specified 
window are correlated to the reference. Signals that correlate at a high percentage are grouped with 
the reference signal to form a cluster. Clustered signals are removed from the data set and the 
remaining signals are shifted to fill the empty spaces and the next iteration of the process begins. 
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This “on-the-fly” technique uses real time data to monitor critical damage growth and has potential 
to be used in-situ. 

 

  
Figure 2. Schematic of clustering process. 

Using correlation, the effects of the attenuation, dispersion, and other aspects of wave 
propagation can be minimize and taken into account. During the early onset of damage, successive 
signals that correlate at a high percentage may indicate localized damage growth and as the damage 
becomes more pronounced, individual signals from fiber breaks travel the same path for a finite 
period of time. The signals within this time window that correlate at or above a predetermined 
percentage are grouped into a cluster. Whereas most models require intrinsic knowledge about the 
state of the material to predict failure, here, the rate of cluster formation as well as cluster size was 
seen to be an indicator of critical damage for quasi-static tests. 
 

2.4 Results 

2.4.1 AE parameters analysis 

 The AE data generated during static loading for both the cross-ply and quasi-isotropic 
material can be seen below. Cumulative AE events vs stress plots can be seen in Fig. 3 and 
highlight the separate regions where matrix cracking, delamination, and fiber breaks occur at a 
high rate. Initially, a sudden increase in the number of events at low stress is seen due to failure of 
the matrix which generates a high rate of acoustic emissions. This behavior typically happens 
around 20-40% of the ultimate stress and saturate shortly after. Matrix cracks saturation is followed 
by an intermediate period characterized by minimal AE signal generation. At this point, the fibers 
are completely responsible for carrying load and the drastic increase of AE activity seen before 
failure is primarily associated with fiber breakage and delamination.  
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Figure 3. Cumulative AE hits vs stressfor cross-ply (top) and quasi-isotropic (bottom). 

  
The above cumulative AE plots follow the expected multi-stage failure process but do not 

show much difference between the two materials. Since the beginning and last regions contain 
extensive matrix cracking and fiber breaks, respectively, examining the AE parameters may 
provide information on the individual failure mechanisms. Splitting of the matrix occurs over a 
certain area and happens over a particular period of time whereas carbon fibers have a relatively 
smaller cross-sectional area and break almost instantaneously. This difference in source duration 
and energy release of the failure modes should generate unique signals in terms of the traditional 
AE parameters.  

Below, the average frequency and duration plots of the individual AE events, shown as 
blue dots in Fig. 4. Ideally, matrix cracking and fiber breaks should generate very distinct signals 
but there is only a minimal difference in the frequency characteristics seen for the two regions. 
This is seen in both cross-ply and quasi-isotropic material. However, the later region for the cross-
ply seems to have a slightly higher frequency centroid than the cross-ply material. Duration plots 
for both material as well as any other parameter plot provided very limited information on the 
damage development due to signals being affected by attenuation, dispersion, and scattering. The 
effects of attenuation and dispersion as a function of material properties and geometry have been 
well documented. However, the effects of attenuation and dispersion as a function of damage is 
not well understood because they depend on the amount of damage a signal encounters on its path 
to a sensor rather than the amount of overall damage. 
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Figure 4. Average Frequency and Duration plots. cross-ply (left), quasi-isotropic(right). 

2.4.2 Correlation of AE signals 

Clustering of AE signals usually involves extracting parameters and forming groups or 
classes based on waveform characteristics. Some methods utilize un-supervised approaches that 
make use of amplitude or other traditional parameters as classification metrics [17-20]. The 
accuracy of such techniques depends on accurate measurement of distinguishing features while 
accounting for effects of wave propagation, which is heavily dependent on distance. 

The proposed correlation technique took the same data that generated limited insight from 
a traditional AE parameter standpoint and extracted meaningful information in terms of critical 
damage growth. To account for the change in the propagating medium due to damage, a window 
was used to only analyze successive signals to find clusters. This windowing assumes that the 
material microstructure of a given signal path stays constant or exhibits insignificant change for a 
finite period of time or stress. The clusters plots using a 90% correlation value are shown in Fig. 
5and detail how various cluster sizes grow as a function of stress. Each line represents an individual 
cluster size. 
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Figure 5. Cumulative cluster growth for cross-ply specimen: sensors1 and 2. 

The most accurate and non-trivial way to accurately capture the fiber break phenomenon 
is to physically count the breaks using high resolution microscopy. Reifsneider and Jamison [1] 
manually observed fiber breakage in each ply of a cross-ply and unidirectional specimens using 
scanning electron microscopy (SEM). A specimen was loaded to a certain percentage of the 
ultimate stress, then unloaded and dissected, and the number of fiber breaks for given area (mm-2) 
was determined. This was done at multiple ultimate stress percentages. Figure 6 shows a 
comparison between these findings and the results of this work. The AE data is a cumulative plot 
of AE clusters that have a size of 10 or greater. After sifting through the data, it was determined 
that 10 was a consistent metric for a minimal cluster size. 

 
Figure 6. Comparison of SEM results and AE data 

From the above plot, the trend of the AE data falls between the SEM data as expected since 
the lay-up of the AE specimen falls between the layup of the other two. Having such physical 
evidence can provide calibration and fine tuning of the AE data analysis, which will allow this 
behavior to be characterized without any labor intensive or computational heavy processes. With 
that being said, the ultimate comparison would involve the same specimen for AE measurement 
and SEM imaging. 

The waveforms that make up the clusters were also examined and the AE features were 
studied. AE parameter analysis of clustered waveforms may provide information not noticeable 
when all AE data is analyzed. The frequency content of the reference waveform of each cluster 
was plotted with respect to stress, Fig. 7. 
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Figure 7. Average frequency of cluster signals (red) and all AE data: data from sensor near failure, away 
from failure. 

 In the above average frequency plots, the reference signals (red) are superimposed over all 
the AE data. Since the clusters are associated with localized damage growth resulting from fiber 
breakage, it is expected that the signals contain relatively higher frequency content. Theoretically, 
fiber breaks should generate much higher frequencies than what is shown in Fig. 7but the PZT 
wafer sensors had an upper frequency limit around 700 kHz. Sensors having a broader frequency 
response can be used but the influence of attenuation on the signals seems to play a more 
significant role in the measurement of higher frequencies. Hence, the reference signals from a 
given sensor tend to occupy the upper frequency domain when failure occurs near or at that sensor. 

2.4.3 Location of clusters 

 The process of identifying clusters started with understanding localized damage growth. In 
this section, the origin of AE signals is studied and determined. Location of AE events itself is a 
well-understood process and has been studied extensively. In the case of transient waves, 
individual sensors may be triggered by different parts of the same waveform. A detailed waveform 
analysis was done to mitigate this problem and help enhance source location of AE clusters. 
 Since clusters are composed of multiple signals, source location only applies to the 
reference waveform and the subsequent signals are assumed to have originated from the same 
location. The transient nature of the signals makes it difficult to get precise time of arrival 
measurements. The extensional mode, given its faster velocity and non-dispersive nature, is 
primarily used to determine the velocity of the wave. However, as in the case of an aluminum 
plate, the in-plane surface displacement of the extensional mode is inversely proportional to its 
frequency, with most of the energy of the in-plane component being contained near the mid-plane 
of the material; the opposite effect is seen for the out-of-plane component of the extensional mode 
[21].The PZT wafer sensors used are designed to be much more sensitive to the in-plane 
component but there is only a small percentage of in-plane energy available for measurement. The 
internal structure of composite materials is quite different from isotropic media but this 
phenomenon may also influence AE measurements in this study. 
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 Figure 8 shows the location of raw AE data and the corresponding signal density plots 
relative to sensor placement. While it is possible to notice some areas of higher AE activity, the 
copious nature of polymer matrix composites can mask useful information due to the sheer number 
of events. The density plot highlights regions of high localized activity that is not clearly visible 
in the raw data. These clusters of signals are the targets of the correlation technique and can be 
indicators of critical damage growth. In addition, having location information gives the ability to 
see where the specimen will fail in real time.  
 

 
 

 

Figure 8. Raw AE location data (left) and signal density (right) plots. S1 and S2 refer to sensors 1 & 2. 

 The above plot shows the location of AE events as the specimen was loaded to failure. 
Tens of thousands of signals were measured but the events were seemingly distributed randomly 
along the gage section. Using only location, there was not a relative clustering of signals near the 
failure region which would be noticeable in the density plot on the right. However, there was useful 
information extracted from the above data using correlation and it was plotted in the form of 
clusters, seen below. 

 
 

Figure 9. AE cluster location (left) and cluster density (right) plots. 

Figure 9 shows the results of applying the correlation technique to raw AE data. Whereas 
the raw data and the AE parameter data gave very limited insight, the cluster based approached 
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provided indication of critical damage growth as well as location information. Failure of the 
specimen occurred slightly above sensor 2 which corresponds well with the dense region of AE 
clusters. On the color spectrum, red indicates an area of high signal density. The two dense clusters 
align well with the failure area but slightly less dense clusters appear near sensor 1 right before 
failure. Ideally, the location of the clusters should indicate where the material will fail. However, 
the uncertainty associated with the material in terms of its internal structure, Lamb wave behavior, 
and even the speed of sound right before sudden failure is not well understood and requires more 
investigation.  

2.5 Conclusion 

 Quasi-static tension tests were performed on cross-ply and quasi-isotropic CFRP 
specimens. The traditional acoustic emission parameters, such as frequency and duration, were 
examined for information pertaining to the different types of damage growth during testing. While 
slight differences were noticed in the frequency and duration centroids of the matrix crack 
saturation region and the fiber break region for the cross-ply material, there was too much scatter 
in the data to quantify anything useful. The AE parameter analysis for the quasi-isotropic data was 
unable to highlight the different failure regions as well. 
 A correlation technique was developed to extract localized damage growth information 
associated with critical damage growth. Using the same AE data that yielded minimal information 
from traditional parameter analyses, the correlation process was able to extract localized clusters 
which are directly related to fiber bundle failure. This technique was able to monitor the 
development and growth of various clusters sizes and found that the occurrence of large clusters 
directly precedes sudden failure. 
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PART 3: INFLUENCE OF ATTENUATION ON ACOUSTIC EMISSION SIGNALS IN 

CARBON FIBER REINFORCED POLYMER PANELS 

Abstract 

Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer 
(CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of 
the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined 
experimentally along different directions for the two types of CFRP panels. In the frequency range 
from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material 
related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels 
were also noted with propagation directions. Such mode and frequency dependent attenuation 
introduces major changes in the characteristics of AE signals depending on the position of the AE 
sensor relative to the source. Results from finite element simulations of a microscopic damage 
event in the composite laminates are used to illustrate attenuation related changes in modal and 
frequency components of AE signals.  

3.1 Introduction 

Acoustic emissions (AE) are stress waves generated due to localized release of strain 
energy by processes such as crack growth in structural materials. These stress waves which 
propagate in the structures serve as indicators of damage growth. AE signals in composite 
laminates originate from multiple failure modes such as transverse matrix cracks, delaminations, 
and fiber breaks. The different failure modes are expected to act as distinctly different acoustic 
sources within the laminate. 

In plate type structures, stress waves generated by damage events propagate as 
combinations of different Lamb wave modes [1-4]. The presence of each type of Lamb wave mode 
and its frequency content is determined by the location and type of the damage event. In composite 
test specimens, results from previous studies [5-7] indicated occurrence of AE signals in the 
frequency range between 100 kHz and 500 kHz. In this frequency range, the stress wave 
propagation is dominated primarily by the fundamental symmetric and antisymmetric modes, 
commonly referred to as S0 and A0 modes and the shear type SH0 modes [8-12]. Near the higher 
end of the specified frequency range, higher order modes occur in some cases. These higher order 
modes are either too small or undetectable by commercially available AE sensors.  Hence, 
experimental AE signals in composite materials, in the specified frequency range, are likely to be 
combinations of the fundamental modes. 

There were numerous attempts in the literature [7, 13-15] to classify AE signals according 
to the likely failure modes that generate these signals. However, definitive relationships between 
the different failure modes and the features of resulting AE signals have not been established. Such 
correlations would be feasible only if the distinguishing features such as ratio of different modes, 
and different frequency components are preserved in the signals as they propagate along the 
composite laminates. If these features are not preserved during the propagation of AE related 
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waves, it would be futile to repeat the attempts to relate features of AE signals to composite failure 
modes.  

The characteristics of AE signal waveforms in terms of the amplitudes of individual wave 
modes and frequency components are important for identifying failure modes. Both the amplitude 
and frequency content of the AE signals are altered by different attenuation mechanisms as the 
waves propagate in the laminates. Geometric spreading as well as frequency dependent dispersion 
reduces the amplitude of AE signals. The viscoelastic nature of the matrix in carbon/polymer 
composites introduces significantly higher levels of attenuation.  

There have been several studies in the past on the measurement of attenuation in aluminum 
and composite structures. Mason [16] describes a general procedure for the measurement of 
attenuation in materials. Ramadas et al. [17] modeled attenuation of Lamb waves using Rayleigh 
damping model. Pandya et al. [18] experimentally studied the reduction in amplitudes of stress 
waves with distance in a ballistic impact test in composites. Wandowski et al. [19] conducted 
attenuation measurements by means of PZT sensors placed on a composite laminate. Kerber et al. 
[20] used Chirplet transform to calculate attenuation of Lamb wave modes. Sun et al. [21] studied 
the effects of material viscoelasticity by using numerical model of laser generated Lamb waves. 
Drinkwater et al. [22] examined the effect of compressively loaded elastomer on propagation of 
A0 and S0 wave modes experimentally. Aggelis et al. [23] used numerical model of a homogeneous 
material to present how features of AE signals such as duration, rise time and frequency change 
with distance. Maillet et al. [24] used energy attenuation as an indicator for damage monitoring 
and lifetime prediction.  

The major objective of the present work is to examine how the AE signals generated by 
damage mechanisms are modified as they propagate across composite laminates. In addition to 
understanding the changes introduced to AE signals during propagation, the information generated 
in this paper will also be useful for developing appropriate experimental procedures including the 
selection of sensors, number of sensors, and their locations for monitoring composite structural 
members. The AE signals, as discussed earlier, are composed of different frequency and modal 
components of Lamb waves. Attenuation coefficients of the fundamental Lamb waves which 
constitute AE signals, over a range of frequencies were measured experimentally in selected 
directions for a crossply and a quasi-isotropic plate. The AE transducers used in this study are 
sensitive to out of plane displacements and because of this the SH0 component is not included in 
the study. These attenuation coefficients were later incorporated into numerically generated AE 
waveforms to illustrate the effect of attenuation on AE signals detected at various distances from 
the source. The details of the experimental as well as numerical procedures and results are 
presented in the following sections. 
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3.2 Experiments to determine material related attenuation as function of mode and 

frequency 

Attenuation coefficients of A0 and S0 wave modes in two different laminate configurations 
were measured. They consisted of a crossply laminate with stacking sequence of [0/90]6s and a 
quasi-isotropic laminate with stacking sequence of [+45/90/-45/0]3s, both of which had a total of 
24 plies. The dimensions of the crossply and quasi-isotropic laminates were 600 mm × 600 mm × 
3 mm and 425 mm × 425 mm × 3 mm, respectively. The laminates were inspected using 
thermography to ensure that they were free from major defects. The fiber volume ratio for the 
laminates was determined to be 0.65.  

The panels were excited by single frequency five cycles Hanning window tone burst signal 
at frequencies ranging from 100 kHz to 500 kHz, in 50 kHz increments. The pulses were applied 
at locations selected to minimize the effect of reflections from the edges. The peak amplitudes of 
the A0 and S0 components of the received pulses were measured along the directions of 0, 30, 45, 
60 and 90 degrees as shown in Figure 1. Along each of these directions, the amplitudes were 
measured at equally spaced points up to a maximum distance of 250 mm. At each of these 
locations, the signals were measured on both surfaces of the laminates, so that the S0 and A0 
components of the signals could be separated by the addition and subtraction of the signal 
waveforms. 

The stress wave signal was introduced into the laminate in most cases using a 5 MHz, 6 
mm diameter, damped ultrasonic transducer. In order to generate stronger S0 modes below 300 
kHz, a piezoelectric wafer bonded to the surface of the laminate was used. The response signal 
waveforms were received in all cases using another 5 MHz, 6 mm diameter, damped ultrasonic 
transducer.  The received waveforms were amplified by a preamplifier with 50 kHz high pass filter 
and recorded in a commercial AE monitoring system at a sampling rate of 5×106 samples/second. 

 

 
Figure 1 Angles of measurement. 

 
 

3.3 Experimental results 
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3.3.1 Identification of A0 and S0 modes 

Surface excitation of the panels by the sine wave pulses resulted in excitation of multiple 
Lamb wave modes. For the relatively low frequencies considered here, the Lamb waves 
predominantly propagate in the form of S0 and A0 modes that are separated in time because of the 
differences in their velocities. The SH0 component was not detectable as it produces no out of 
plane displacements. Figure 2 shows two waveforms obtained at the same location but on opposite 
faces of the crossply laminate. These waveforms were obtained along the 0 degree direction, for 
200 kHz input excitation at distance of 100 mm. The A0 and S0 wave mode components can be 
clearly distinguished from the figure. 

 
Figure 2 Representative waveforms used for measuring received signal amplitudes; waveforms in 

crossply laminate  
 

3.3.2 Dispersion curves of the laminates 

The experimentally determined Lamb wave dispersion of the fundamental A0 and S0 modes 
along 0 degree direction in the laminates is shown in Figure 3. Time-of-flight analysis was used to 
generate the dispersion curves. As mentioned earlier, multiple measurements were available at 
each frequency. The best estimate of the velocity at a given frequency was obtained through 
averaging. The experimentally determined dispersion curves were assessed for validity through 
review of similar curves which were generated for similar and different laminate configurations 
[8-12].Phase velocities in the two laminate configurations were also evaluated by a software 
developed by LAMSS (Laboratory for Active Materials and Smart Structures) at University of 
South Carolina.[25] 
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Figure 3 Dispersion curves for crossply (top) and quasi-isotropic (bottom) panels along 0 degree 

directions 
 

3.3.3 Calculation of attenuation aoefficients 

The reduction in signal amplitude caused by geometric spreading as the stress waves travel 
outwards from a source, in a plate like structure, is assumed to be inversely proportional to the 
square root of the radial distance from the source. The attenuation due to energy loss mechanisms 
such as material absorption is assumed to result in an exponential decay of the amplitude with 
distance of propagation. Combining these two effects, the amplitude of a signal, 𝑣, at a distance, x 
is given by  

𝑣 = (
1

√𝑥𝑖
) 𝑉 𝑒−𝑥                                                                                             (3.1) 

Where, V represents the peak amplitude at the source and α is the attenuation coefficient.  
 

Calculation of an attenuation coefficient using equation (3.1) is impossible from single 
measurement of amplitude as the source amplitude is often unknown. Hence, the attenuation 
coefficient can be determined by defining equation (3.1) for two different points at radial distances 
x1 and x2 for which the measured peak amplitudes are Vm1 and Vm2 respectively. In such a case, the 
attenuation coefficient is calculated using  

 = (
1

𝑥2−𝑥1
) ln (

𝑉𝑚1√𝑥1

𝑉𝑚2√𝑥2
)                                                                                (3.2) 

 
When multiple measurement points exist along a given direction and at a given frequency, 

several calculated values of attenuation coefficients become available. A least squares method can 
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be used to obtain a single representative value of the attenuation coefficient from such multiple 
values. Using equation (3.1) and N amplitude measurements, Vmi, along a given direction, the error 
function can be defined as: 

𝜀 = ∑ (𝑉𝑚𝑖√𝑥𝑖 − 𝑉 𝑒−𝑥𝑖)2𝑁
1         (3.3) 

Alternatively, the error function can be written on a logarithmic function as: 
𝜀 = ∑ (𝑙𝑛 (𝑉𝑚𝑖√𝑥𝑖) − 𝑙𝑛(𝑉 𝑒−𝑥𝑖))2𝑁

1        (3.4)  
Or, 

𝜀 = ∑ (𝑙𝑛 (𝑉𝑚𝑖√𝑥𝑖) − (−∝ 𝑥𝑖 + 𝑙𝑛 (𝑉)))2𝑁
1       (3.5) 

We want to determine the values of α and V which minimize the error function such that 
𝜕𝜀

𝜕𝛼
= 0  and  𝜕𝜀

𝜕𝑉
= 0          

This gives,  
−2 ∑ (𝑙𝑛 (𝑉𝑚𝑖√𝑥𝑖) − (−∝ 𝑥𝑖 + ln (𝑉)))𝑥𝑖

𝑁
1 = 0                  (3.6)        

and,      
−2 ∑ (𝑙𝑛 (𝑉𝑚𝑖√𝑥𝑖) − (−∝ 𝑥𝑖 + ln (𝑉)))𝑁

1 = 0      (3.7) 
 

This gives a set of equations which in matrix form can be written as follows. 

{

−

ln (𝑉)
} = [

∑ 𝑥𝑖
2𝑁

𝑖=1 ∑ 𝑥𝑖
𝑁
𝑖=1

∑ 𝑥𝑖
𝑁
𝑖=1 𝑁

]

−1

{
∑ 𝑥𝑖 ln(𝑉𝑚𝑖√𝑥𝑖)𝑁

𝑖=1

∑ ln(𝑉𝑚𝑖√𝑥𝑖)𝑁
𝑖=1

}              (3.8) 

Hence, the representative attenuation coefficient, α, can be determined using equation (3.8)  
 

3.3.4 Attenuation coefficients for the CFRP panels 

In the experiments, it was noted that the S0 modes propagate longer distance than the A0 
modes; hence, it was possible to measure the S0 modes at propagation distances between 25 mm 
and 250 mm from the source, with 25 mm intervals. For A0 modes, however, the measurements 
were made between propagation distances of 25 mm and 100 mm from the source with 12.5 mm 
intervals. Attenuation coefficients of the S0 and A0 modes were obtained from these measurements 
along each propagation direction for each frequency described in section 2. 
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Figure 4 Attenuation coefficients of A0 (left) and S0 (right) modes in the crossply laminate along different 

directions. 
 

Crossply Laminate 
A0 modes: Figure 4 shows the attenuation coefficients of the A0 and S0 modes in the 

crossply laminate along different directions. Because of the steep increase in attenuation with 
frequency seen in A0 modes, measurements could be made only to a maximum frequency of 300 
kHz. At 100 kHz, attenuation was observed to be relatively lower in the 0 and 90 degree directions 
with a value of about 3 Nepers/m while along 30, 45, and 60 degree directions; the attenuation was 
three times higher. The rates of increase of the attenuation with frequency were different for the 
different directions. The attenuation at 300 kHz was found to lie between 17 and 23 Nepers/m in 
the five directions considered here. 

S0 modes: Because of the lower attenuation seen in S0 modes, attenuation measurements 
could be carried out up to a frequency of 500 kHz.  There was modest variation of attenuation 
levels in the 5 different directions considered. At 200 kHz the attenuation was within the range of 
0.5 and 2 Nepers/m in the five directions. However, at 500 kHz, the attenuation was found to be 
only 2.5 Nepers/m along 60 degree direction while along 90 degree direction it was about 8 
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Nepers/m. In the other three directions, attenuation values were between these two values. Over 
the lower frequency side of the measurements, the attenuation level experienced by the signals was 
very minimal. 

 

Quasi-isotropic Laminate 

 
Figure 5 Attenuation coefficients of A0 (left) and S0 (right) modes in the quasi-isotropic laminate along 

different directions. 
A0 modes: Figure 5 shows the attenuation coefficients of the A0 and S0 modes in the quasi-

isotropic laminate along different directions. As in the case of the crossply specimen, there was a 
steep increase in attenuation with frequency of A0 modes. At 100 kHz frequency, attenuation 
values varied between 6 and 11 Nepers/m. The lowest values were found along 30 and 60 degree 
directions. The attenuation value for a frequency of 300 kHz was the lowest along 45 degrees at 
13 Nepers/m and the highest along 60 degrees direction at 31 Nepers/m.  

S0 modes: As in the case of the crossply laminate, the attenuation of S0 modes was lower 
than that of A0 modes. Attenuation values of the signals at 200 kHz in the five directions considered 
here were about 1 Neper/m. There were moderate differences in the rate at which S0 mode 
attenuation increased with frequency among the different directions. Along the 60 degree 
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direction, attenuation remained unaffected by the frequency within the range considered. Along 
the other four directions, the attenuation values at 500 kHz ranged from 6 Nepers/m to 10 
Nepers/m.  

3.3.5 Discussion of experimental results 

In general, A0 modes were found to have significantly higher levels of attenuation 
compared to S0 modes in both the crossply and quasi-isotropic laminates. In addition, in all 
propagation directions, there is an increase in attenuation with frequency. The propagation 
direction of 60 degrees is an exception in which attenuation seems to vary very little with frequency 
for S0 mode. At a frequency of 200 kHz, the attenuation values of A0 mode in most directions 
range from 10 to 20 Nepers/m whereas for S0 mode, attenuation values range from 0.2 to 1.2 
Neper/m for both panels studied in this paper. Hence, at this frequency it takes just 50 mm (2 in) 
for the amplitude of A0 mode to lose 80% of initial amplitude where as it takes 300 mm (12 in)  
for the same thing to happen for S0 mode. At frequencies greater than 300 kHz, A0 mode is virtually 
undetectable beyond a propagation distance of 50 mm (2 in) while even at 500 kHz, the S0 mode 
retains nearly 10% of its amplitude after propagating a distance of 250 mm (10 in).  

The attenuation coefficients obtained in the quasi-isotropic laminate deviated from the 
assumed quasi-isotropy behavior. Assumption of quasi-isotropy is valid for such laminates under 
in-plane loadings. However, because of the variation of strain state in the thickness direction, the 
quasi-isotropy behavior is not exhibited under bending types of loads. This was described in the 
discussion of Laminate plate theory by [26]. As the flexural components of displacements do not 
show quasi-isotropy, some direction dependency is exhibited by wave propagation in the 
laminates. This was true in the phase velocities as well as group velocities of a quasi-isotropic 
laminate studied by Rose [8]. This is likely to result in direction dependency of amplitudes of 
signal waveforms and attenuation coefficients calculated from the amplitude measurements. 

In composite laminates, each combination of propagation direction, mode and frequency 
is likely to result in a different state of deformation including in-plane, bending and twisting 
components and their variation across the thickness. The resulting deformation of the material is 
unevenly distributed between the reinforcing fibers and the polymer matrix. In addition, there is 
beam steering that influences the measured stress wave amplitudes. It is expected that when the 
matrix material shares the bulk of deformation, the viscoelastic nature of the matrix will result in 
greater attenuation of the propagating stress wave. Variations in the modes and frequencies result 
in changes in the strain and deformation components among the individual laminae within the 
laminate, which in turn will affect the attenuation values. Since the absence of increase in 
attenuation level of S0 mode with the increase of frequency along the 60 degree direction was 
different from those seen in other directions, the experiments were repeated several times, 
including different parallel paths at 60 degree orientation, and the observed behavior was 
confirmed to be the true behavior along this direction.  
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3.4 Illustration of effect of attenuation on acoustic emission waveforms  

In plate type structures, AE related waves propagate in the form of Lamb waves occurring 
over a range of amplitudes and frequencies. As mentioned in the introduction section, different 
attenuation mechanisms act on these waves. In this section, we demonstrate how the different 
mechanisms affect the waves as they propagate in the panels. AE events were numerically 
simulated and corresponding waveforms were measured at several evenly spaced locations. The 
2D numerical waveforms take into account the dispersion due to the wide range of frequency 
components contained in the waveforms. The material absorption factor was later included by 
making use of the attenuation coefficients which were reported in the previous section. Finally, 
the geometric spreading factor was included to demonstrate the progressive reduction in 
amplitudes of the signals.  

The procedures used to modify the waveforms in this section are validated by comparing 
the amplitudes of the modified waveforms with the amplitudes of experimentally generated AE 
type waveforms in the composite laminates. The AE type signals were generated along 0 degree 
direction of the laminates by applying a triangular pulse on the laminates. The applied pulse type 
load and its frequency spectrum are described in the following section. The procedures used for 
these experiments are quite similar to those described in section 3.2. 

3.4.1 Finite element simulations of AE signals 

The governing equation for elastodynamic wave propagation in a continuous medium is 
given by equation (4.1). In the equation,𝜎𝑖𝑗 represents the stress tensor, 𝑓𝑖 represents the body force 
vector and the displacement vector is represented by 𝑢𝑖. In our studies, the solution for this 
equation was obtained through explicit time integration in LS-DYNA  

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2           (4.1) 

In previous studies, authors used different types of source functions to simulate energy 
release during an AE event [27-29]. In the current study, triangular pulse was chosen since it 
provided waveforms with S0 and A0 components in the desired frequency spectrum of this study. 
The triangular pulse along with its frequency spectrum is shown in Figure 6. The same type of 
pulse was also used to generate experimental AE type waveforms in the laminates. These 
waveforms were used to validate the procedures implemented to modify the numerical waveforms. 

 
 

Figure 6 Triangular pulse and its frequency spectrum 
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Two dimensional plane strain numerical models of the crossply and quasi-isotropic 
laminates were generated in LS-Prepost. The models had dimensions of 1200 mm by 3 mm. Each 
of the individual plies in the laminates was modeled by a layer of elements. The elements in each 
layer had size of 0.125 mm by 0.25 mm. The models totally consisted of 115200 elements and 
120025 nodes. The models were used to simulate AE related wave propagation along the 0 degree 
direction of the respective laminates. The lamina properties shown in Table 1 [30] were used in 
the simulations. In both models, the left edge was fully constrained and the triangular pulse 
described earlier was applied on the right edge at a depth of 0.75 mm. During the solution, the 
stresses and nodal displacements were calculated at a stable increment of 10.8 ns.   

Table 1 Lamina Properties 
E1, Pa E2, Pa G12, Pa G23, Pa Nu12 Nu23 Nu13 

1476e9  10.3e9  7e9  3.7e9  0.27 0.54 0.27 

 
It was possible to generate AE related wave propagation which consisted of different Lamb 

wave modes. The two dimensional models do not include the geometric spread of the waves as 
function of propagation distance. Because of the linear elastic properties used in the models, the 
obtained waveforms were free of material related attenuation. Out of plane displacement 
waveforms were taken between propagation distances of 25 mm and 250 mm at increment of 25 
mm. The numerically generated waveforms were filtered to remove components outside of the 100 
kHz-500 kHz range. Figure 7 shows a numerical out of plane displacement waveform and its 
wavelet. The waveform was measured at distance of 150 mm from the AE source in the crossply 
laminate. AGU Vallen wavelet is used to obtain the wavelet diagram. 

 
 

Figure 7 Signal waveform and wavelet diagram for numerical AE event 
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3.4.2 Different attenuation mechanisms and AE signals 

The simulated AE waveforms, after filtering between 100 kHz and 500 kHz, were primarily 
composed of S0 and A0 modes. As mentioned earlier, dispersion was present in these waveforms 
because of the wider frequency range. The intent of this section is to illustrate the effect of material 
related attenuation and geometric spreading on AE related waves as they propagate through the 
composite laminates. From the two dimensional elastic finite element simulations, waveforms at 
various propagation distances were obtained.  These waveforms were modified to include the 
effects of geometric spreading and attenuation.  

The experimentally determined mode and frequency dependent attenuation values, 
reported in section 3.4, were used to modify the numerical waveforms to illustrate material related 
attenuation. The S0 and A0 components of each of the waveforms were separated first. The 
frequency components of these modes were then separated by Fast Fourier transform (FFT). The 
amplitudes of the different frequency components were multiplied by the appropriate attenuation 
coefficients obtained from the experiments. The attenuated waveforms corresponding to the two 
modes were obtained using an inverse transform of the respective modified amplitudes. Finally, 
the S0 and A0 modes were combined to construct the attenuated AE waveform.  

 
Figure 8 Numerical waveforms without and with material related attenuation for A0 mode (left)  and S0 

mode (right) 
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Figure 8 shows the effect of material related attenuation on the S0 and A0 components of 
the AE waveforms in the quasi-isotropic laminate. The waveforms shown in blue color are those 
obtained at different propagation distances without material related attenuation whereas, the 
waveforms shown in red color are those modified after including material attenuation. The 
amplitude of A0 mode rapidly decreases with propagation distance and after a propagation distance 
of 250 mm, this mode is almost completely eliminated from the AE signal. The amplitude of S0 
mode, on the other hand, undergoes moderate reduction and is recognizable even after a 
propagation distance of 250 mm.  

The effect of geometric spreading was calculated by direct implementation of equation 
(3.1). A reasonable estimate of peak amplitude near the source of the AE event was calculated by 
using peak amplitude of a wave mode at propagation distance of 25 mm and an attenuation value 
corresponding to the frequency at which this amplitude occurred. The calculated estimate of the 
peak amplitude near the source and a reasonably selected value of attenuation coefficient were 
used to calculate the expected amplitudes at propagation distances of 50 mm through 250 mm, 
with increment of 25 mm.  

The peak amplitude of the waveforms at a distance of 25 mm from the source was used as 
the initial amplitude. The results from the two dimensional finite element model represent a 
parallel beam of Lamb waves propagating in the laminates. The successive modifications to the 
peak amplitudes of the waveforms introduced by dispersion, material related attenuation and 
geometric spreading were determined at points located at 50 mm through 250 mm along 0 degree 
directions in the two laminate configurations under consideration.  

Figure 9 shows the peak amplitudes of the A0 and S0 modes of the AE waveforms at 
different propagation distances along the zero degree direction in the laminates. The dispersion 
related amplitude changes in A0 and S0 modes are indicated by blue lines along with the data points 
indicated by circles.  There is an amplitude reduction of about 10 to 20 % in these modes at a 
distance of 250 mm. Further, in figure 9, the peak amplitudes of the A0 mode appear to fluctuate 
about a trend line as the propagation distance increases. Detailed examination of the waveforms 
revealed that leading edge of the waveforms was dominated alternatively by either one or two high 
amplitude oscillations, apparently due to dispersion effects. This alternating distribution of energy 
between one or two oscillations is responsible for the amplitude fluctuations.  

The red curves along with the data points indicated by ‘+’ signs represent the amplitudes 
after including the changes due to both dispersion and material attenuation. At propagation 
distance of 250 mm, the amplitude reduction of S0 mode in the crossply and quasi-isotropic 
laminates was 55% and 45% respectively. The reduction in amplitude of the A0 mode at 250 mm 
was about 85% in the crossply laminate and 95% in the quasi-isotropic laminate. In addition to the 
peak amplitudes, because of dispersion and greater attenuation in higher frequency components, 
the envelopes of the two modes undergo changes with propagation distance.  
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Figure 9 Amplitude reductions due to geometric spreading, material absorption and dispersion in quasi-
isotropic (top) and Crossply (bottom) laminates 

 
The green lines with data points indicated by ‘*’ represent the peak amplitudes after the 

geometric spreading effect was included. As a combined effect of dispersion, material related 
attenuation and geometric spreading, at distance of 100 mm, the amplitude of S0 mode dropped to 
was about 30 of the amplitude at 25 while that of the A0 mode about 15 % of the amplitude at 25 
mm. . These amplitudes which were obtained after modification by all mechanisms were compared 
with the experimentally generated amplitudes. In figure 9, the black curves with ‘x’ signs represent 
peak amplitudes of the S0 and A0 parts of the experimental AE type waveforms. The excellent 
match between the curves validates the approaches used to generate the modified amplitudes.  

 

3.5 Summary and conclusion 

The influence of attenuation on AE signals in carbon-epoxy laminates is evaluated. 
Attenuation measurements were made for two common types of carbon/epoxy laminates, namely 
a crossply laminate and a quasi-isotropic laminate. The experimental results indicate that the A0 
modes of wave propagation experience much higher level of attenuation than their S0 counterparts. 
The attenuation of the two modes further depends on the direction of propagation and their 
frequency components. For illustrating the effect of attenuation, numerical model of stress wave 
generated from a microscopic damage in a composite laminate was used. A0 components in the 
AE emission signals are virtually eliminated as the signal propagates over even modest distances 
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of the order of 100 mm. In contrast, the S0 mode is detectable at longer distances. The results 
implied that attenuation of AE signals has to be taken into consideration in deciding the number, 
type, and location of the sensors to be used for monitoring integrity of composite structural 
members. In addition, it should also be included in the interpretation of the AE signals.  
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PART 4: CORRELATION BASED FATIGUE CRACK CHARACTERIZATION IN 

ALUMINUM 

Abstract 

The relationship between characteristic features of acoustic emission (AE) signals and 
crack growth in Aluminum panel is examined in this paper. AE signals from fatigue crack growth 
in an Al 6061 plate with edge notch were collected by means of wideband AE sensors. 
Distributions of cumulative and individual characteristic features of the signals were evaluated. 
The signal waveforms were correlated among each other to identify features which were sensitive 
to crack growth. It was found that the amplitude and duration features were indicative of changes 
in the crack growth rate. The correlations among the waveforms indicated that the amplitudes of 
the antisymmetric (A0) wave components of the signal waveforms increase as the crack length 
increases. Such characterizations of crack related signals are useful in AE based structural health 
monitoring applications. 

 

4.1 Introduction 

Acoustic emissions (AE) are stress waves generated due to sudden release of strain energy 
by processes such as crack growth in structural materials. These waves, in plate type structures, 
propagate as combinations of wave modes which occur over a wide range of frequencies. AE based 
structural health monitoring relies on detection and analysis of such acoustic waves. The 
information contained in the signal waveforms could be used to locate the source of damage and 
identify the type of damage.  

The characteristic features of AE signal waveforms such as amplitude, frequency, duration 
and rise time are dependent on the type of damage and its location in the monitored structure.  
These features could be used characterize the relationship between AE behavior and fatigue crack 
propagation. In this regard, several studies in the past attempted to develop such characterizations. 
Aggelis et al. [1] conducted tests using aluminum compact tension specimens to characterize 
fatigue related damage using AE. The observed AE behavior was indicative of shift from tensile 
to shear type crack propagation modes. Gong et al. [2] found that the cumulative number of AE 
hits and cumulative amplitudes of AE signal waveforms, within selected window of amplitudes, 
showed linear variation with crack growth. Linear logarithmic relationships between the stress 
intensity factor, ΔK, and crack growth rate, da/dN,  and between ΔK and hit count rate, dC/dN, 
were derived by Roberts et al. [3]. The tests were conducted on  compact tension specimens and 
T-section girder specimens. Grandhi et al. [4] were able to develop relationship between AE energy 
release rate and crack growth rate using AE data from two plate type Aluminum test specimens. 
From a test on steel bridge material, Hossain et al. [5] reported that early stages of fatigue crack 
growth produced insignificant AE. A prognostic analysis based on AE signal absolute energy was 
presented by Yu et al. [6]. It was found that the absolute energy rate was able to characterize fatigue 
life prediction better than the count rate.  

The characterization of fatigue cracks through the use of AE signal waveform features is 
quiet useful in AE bases structural health monitoring. In addition to such approaches, other authors 
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examined different aspects of fatigue crack growth and AE. Sause et al. [7] numerically modeled 
acoustic signal propagation from crack growth taking into account the dynamic displacement field 
which occurs during incremental crack growth. The numerical results were validated by 
experimental results and modeling approaches significantly different from previous approaches 
were used. Lugo et al. [8] used AE to quantify evolution of microstructural damage. Andreykiv et 
al. [9] obtained the radiation  pattern of  longitudinal and transverse acoustic waves from growth 
of penny shaped cracks in aluminum. Grondel et al. [10] conducted a test combining lamb wave 
and AE to monitor damage initiation and growth in aluminum. Barsoum et al. [11] applied AE to 
monitor the development of fatigue-crack growth in steel. Self-organizing map (SOM) to identify 
failure mechanisms (plastic deformation, plane strain and plane stress fracture). Fatigue life 
prediction was performed using backpropagation neural network (BPNN). Mukhopadhyay et al. 
[12] developed new AE based approach to calculate initial fracture toughness in steel specimens. 
The calculated values of the fracture toughness were compared with values obtained by other 
methods. Zain et al. [13] conducted fatigue crack growth tests on compact tension specimens to 
model longitudinal cracks in rail steel. The acoustic behavior was monitored during the tests. A 
separate study by Kordatos et al. [14] combined thermography and AE to monitor crack growth.  

The present paper is concerned with the characterization of fatigue crack related acoustic 
emissions. The objective has been to examine the relationship between characteristics of AE 
waveforms and crack growth in an Aluminum 6061 panel. Changes in cumulative and individual 
distributions of the characteristic features of the signals were examined. The signal waveforms 
were correlated among each other to to identify features which were sensitive to crack growth rate. 
The details of the crack growth experiment, the analysis, and the obtained results are presented in 
the following sections. 

4.2 Experiments 

Fatigue crack growth test was done on an aluminum plate from which over 40000 AE 
events were obtained. These signals were obtained for crack growth of 84 mm before the specimen 
failed. In this section, the test setup and procedures of fatigue load application are presented.  

4.1.1 Test setup 

Figure 1 shows the Al 6061 aluminum plate specimen used for the crack growth test. The 
dimensions for the plate, as shown in Figure 1, were 225 mm × 500 mm × 3 mm.  The plate had a 
notch extending from one edge up to length of 38 mm. The end fixture assembly to mount the plate 
onto the Material Test System (MTS), and to apply the fatigue load onto the plate was designed 
such that the maximum stress conditions were near the edge notch tip.  
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Figure 1. Test specimen 
 

The plate was instrumented with four AE transducers to detect the AE signals from crack 
growth. The four transducers were rectangular piezoelectric wafers bonded to the surface of the 
plate. These sensors were shown to have wide band characteristics and could detect signals up to 
a frequency of 700 kHz. The use of transducers located above and below the path of crack growth 
enabled filtering of signals that originated from crack growth through comparison of time of arrival 
at the transducers. The signals from the transducers were amplified by Physical Acoustics 
Corporation PAC 2/4/6 preamplifiers at 40 dB gain. PCI-2 data acquisition system was used to 
acquire the signal waveforms at a rate of 10 x 106 samples/second. A 35 dB threshold was set while 
acquiring the AE signals. The waveforms were recorded for a length of 1ms and contained a total 
of 10240 data points per waveform. However, segments of the waveforms beyond 150 us were 
affected by reflections and were not used in analysis. The results discussed in this paper are from 
the bonded piezoelectric sensor which, in Figure 1, is labelled as 1.  

4.1.2 Test procedure 

The plate was mounted on 20000 lbs. (90000 N) 810 Material Test System. It was subjected 
to loads of 2750 ± 2250 lbs. (12250±10000 N) which were applied at a rate of 5 Hz. It took about 
10000 cycles to initiate the first noticeable crack from the edge notch tip. The tests continued till 
the specimen fractured at around 74000 cycles. The acoustic emissions generated due to crack 
advance were recorded by the system described earlier. Crack growth continued for 84 mm before 
final fracture occurred.  
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4.3 Results and discussion 

4.3.1 Fatigue crack growth 

Figure 2(a) shows the crack growth with the number of cycles from the test. The rate of 
crack growth is also shown in figure 2(b). The plots are shown on a semi-log y-axis scale. After 
initiation, the crack propagation continued with declining rates of growth until crack length of 5.5 
mm. The crack growth between 5.5 mm and 43 mm appeared to show linear variation on the semi-
log scale plot. Between 43 mm and fracture, the crack advanced rapidly with continually increasing 
growth rates.  

 

(a) 

 

(b) 

Figure 2. Crack growth with number of cycles (a) and growth rate (b)  
 

The fracture surface indicates three distinct zones of crack propagation shown in Figure 3. 
The first image represents zone of propagation after crack initiation.  The length of this region 
(labelled zone I) is about 37 mm and it took  68, 000 cycles  to grow the crack by this length. This 
region is particularly characterized by striations in the fracture surface which are shown in figure 
4. The second image represents crack propagation after zone I. In this region (Zone II), the pattern 
characterized by the striations is not present and the average rate of crack growth has increased 
significantly. The crack surface was inclined by approximately 45 degrees with reference to the 
loading direction. This region extends between crack lengths of 37 mm and 77 mm and it took 
only about 5700 cycles to grow the crack between the two lengths. The third type (Zone III) 
represents crack surface which particularly is characterized by v-shaped markings. This region 
continued for a length of 7 mm, after which complete rupture of the specimen occurred. Such 
differences in the surface profiles combined with the changing growth rates are likely to produce 
different AE source mechanisms and AE signal waveforms. 
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Figure 3. Three different fracture surface profiles 
 

 
 

Figure 4. SEM image of Fatigue crack striations during Zone I of crack growth at 5000X 
 

4.3.2 Acoustic emission behavior 

During the test, over 40000 signal waveforms were obtained from the four channels 
(sensors). The signals from crack growth were filtered based on the time of arrival at the sensors 
located on opposite sides of the crack growth path and based on a load window which was set to 
select those waveforms obtained at 80% or more of the peak cyclic load. For the purpose of 
analysis, of the total 40000 waveforms, 6605 signal waveforms which satisfied the time of arrival 
requirement, which occurred at or above 80% of the peak load and which were detected by channel 
1 were selected. Some signal waveforms were identified to originate from the areas where the end 
fixtures were mounted. These could possibly be associated with friction taking place between the 
fixture and the plate. Also, minor deformations taking place at the bolt connections could also give 
rise to AE signals.   

Figure 5 shows the cumulative AE hit distribution as function of the number of cycles. The 
cumulative plot is generated for the filtered crack related AE hits from channel 1. The plot  reveals 
that for longer portion of the curve, i.e, between, 20000 and 65000 cycles, the cumulative number 

Zone III Zone II Zone I 

Crack growth 
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of AE hits increases at a steady rate on the semi-logarithmic y-scale plot. Above 65000 cycles, the 
cumulative number grows rapidly with the number of cycles. The total number of events obtained 
until 68, 000 cycles which corresponds to zone I of crack growth, however, was less than a tenth 
of the total number of events obtained from the test. Significant portion of the cumulative number 
was generated during the last 6000 cycles before rupture. This is confirmed by the curve on the 
plot after 68, 000 cycles.  

 
 

Figure 5. Plot of cumulative hit distribution 
 

In addition to the cumulative occurrence of events, individual and cumulative distributions 
of features of the waveforms were examined to see the relationship between the crack growth and 
the features. Figure 6 shows the individual and cumulative distributions of three features: 
amplitude, duration and counts. It can be seen that, during the first 37 mm of crack growth (68, 
200 cycles), the rate at which the events were generated was lower and only about 500 crack 
growth events were generated. The events during this portion of the test were characterized by 
lower amplitudes, durations and counts. 63 % of the events from this region had amplitudes less 
than 40 dB, 72.2 % of the events had duration less than 50 μs, and 88.4 % had counts of 10 or less. 
After 68000 cycles, large number of events with amplitudes of 40 dB and above were noticed. 
During zone II of crack propagation, which is between 37 mm and 77 mm, only 42 % of the events 
had amplitudes less than 40 dB and 58 % had durations of 50 μs or less. As the crack advanced 
into zone III, of those events obtained before rupture, i.e, between crack lengths of 77 mm and 84 
mm, only 22 % had amplitudes less than 40 dB. The percentage of those events with durations less 
than 50 μs went down to 37 % and 55 % of the events had counts of 10 or less in contrast to 88.4 
% during zone I of crack growth.    
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Figure 6.  Plots of cumulative and individual distributions of AE features from the test 

4.3.3 Evolution of waveforms with crack growth 

The waveforms received at later stages of the test appeared to occur with different features. 
This was explanatory that crack propagation near failure of the specimen produced waveforms 
with different features than those at earlier stages. This could be explained by evolution of source 
mechanisms and change of source to sensor distance among others. These changes in the waveform 
features due to crack propagation were further examined through correlations made among the 
waveforms. A total of 6605 waveforms were assigned to multiple groups of successive waveforms. 
A total of 12 groups of 500 signal waveforms and a group of 605 signal waveforms were generated. 
The waveforms in each group were correlated among each other to determine what type of 
waveforms occurred in large numbers at each stage of crack growth and identify the distinctive 
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features of these waveforms. Of particular interest in this case were identifying traits 
corresponding to the three crack growth zones, Zone I thru Zone III. 

  The correlations used in the analysis are explained by Figure 7. As shown in the sketch, 
the first waveform in the group of 500 waveforms is correlated with the rest of the waveforms in 
the group. Those waveforms that exhibited correlation of 85% or more with the first waveform 
form a cluster. A new dataset is generated for second set of correlations by eliminating the well 
correlated waveforms. In the second correlation, the first waveform from the new dataset is 
correlated with rest of the waveforms in the dataset and, similar to the previous step, the well 
correlated waveforms form another cluster. This procedure continues until the entire waveform 
dataset in a group is exhausted. The same set of iterative correlation procedures were applied to 
each of the 13 groups of waveforms.  

 

 
 

Figure 7. Correlation scheme for each group of 500 waveforms 
 
The application of the correlation algorithms on the waveforms resulted in different 

number of clusters in each group of waveforms. Some clusters in a given group of 500 waveforms 
had only one element implying distinctive nature of the source event as compared to the rest of the 
waveforms in the group. Some clusters have close to 100 waveforms indicating high repetitiveness 
of successive source events, in particular. In this research, after consideration of several choices, 
cluster size of 30 or clusters with 30 or more members were considered for further analysis and 
interpretation. 

Figure 8 shows three sample waveforms and their wavelet diagrams. The wavelet diagrams 
were generated by AGU Vallen wavelet software. The waveforms were selected from the clusters 
which were obtained at the three crack growth profiles highlighted earlier. The first waveform was 
obtained from the dominant cluster in the first group of waveforms. This group contains 
waveforms largely from Zone I of crack growth after crack was initiated. The events in this region 
were being recorded at a slower rate than later stages primarily because of lower amplitudes. It can 
be seen that during the initial stages of crack growth (Zone I), the waveforms which occurred in 
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large numbers as compared to others had weaker antisymmetric (A0) components which is seen 
both in the waveform and the wavelet diagram. Other clusters with smaller size were assessed and 
about 80 % of the waveforms had A0 components which in amplitude were 25% or less of the 
symmetric (S0) amplitude. The frequency of the S0 part was between 200 and 500 kHz as shown 
in the wavelet diagram.  

  

  

  

  

Figure 8. Sample cluster waveforms and their wavelets for events obtained at various stages. 
 
The second waveform was taken from the clusters obtained at the shear type crack 

propagation (Zone II). Nearly 5500 crack related AE events were obtained during this span of 
crack length. All of the groups of signal waveforms which fell in this region had multiple clusters. 
The composition of wave propagation components in the waveforms which occurred in large 
numbers varied significantly. Between 37 mm and 66 mm of crack growth, the clusters had 
waveforms in which the A0 amplitudes varied between 25 to 80 % of the S0 amplitudes. Beyond 
this length, i.e. up to crack length of 77 mm, some of the waveforms had A0 amplitudes which 

S0 

A0 
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were larger than the S0 amplitudes by 10 to 20 %. The frequency of the S0 components was mostly 
between 200 kHz and 500 kHz while that of the A0 components was between 100 kHz and 250 
kHz. 

The third waveform was obtained from the region which was close to rupture of the 
specimen (Zone III). The waveforms which occurred in large numbers as compared to others had 
stronger antisymmetric modes. Most of the groups which fell in this region had multiple clusters. 
The majority of the waveforms had stronger A0 modes with amplitude larger than the S0 modes by 
up to 70%. Particularly, the last group of 605 signal waveforms had clusters all of which contained 
stronger A0 modes. The peak amplitudes of these signal waveforms range between 35 dB and 94 
dB. The frequency of the S0 components was between 200 kHz and 500 kHz while that of the A0 

part was between 100 kHz and 250 kHz. 
Such differences in the wave propagation modes and other features are indicative of the 

changes in the features of received signal waveforms as the crack advances towards rupture. These 
changes are the result of multiple factors related to location and mechanism type among others. 
To demonstrate possible sources of variations in the wave components, two different events were 
numerically simulated and the same two events were experimentally repeated by means of lead 
break tests. The numerical waveforms were obtained for two events near the neutral plane and 
close to the surface of an aluminum plate. The results from each of these are shown in figure 9. 
The waveforms in these waveforms indicate that events near the neutral plane become highly 
dominated by S0 wave modes and as the event location moves away from the neutral axis, the 
resulting A0 component becomes stronger and tends to increase in peak amplitude. Such details 
were confirmed by various authors [15, 16] in the past. In addition, the radiation patterns of the 
respective wave modes combined with the relative locations of the sensors could affect the 
presence of the components in the detected signal waveforms.   

  

  

Figure 9. Numerical (left) and experimental (right) waveforms from AE events near the neutral axis (top) 
and away from the neutral axis (bottom) 
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4.4 Summary and conclusion 

In this paper, the variations which occur in the characteristic features of acoustic emission 
signals due to crack propagation were examined. A fatigue test was conducted on an aluminum 
plate by initiating and growing crack up to fracture. The acoustic emission related waveforms were 
recorded in the process. The waveforms were assigned to multiple groups and correlations were 
carried out to identify the dominant waveforms in each group. At early stages of crack growth, the 
waveforms had weaker A0 components while close to rupture the A0 modes become dominant in 
the majority of the waveforms. Apart from the wave modes, the individual characteristics of the 
waveforms were also indicative of the change in the crack growth rate. Larger amplitude and 
longer duration events were obtained close to the complete fracture of the test specimen.  

Such AE based characterizations of fatigue crack growth are quiet useful in AE based 
structural health monitoring. The variations in signal characteristics are indicators of the rate at 
which damage is propagating in a monitored structure. These results combined with the works of 
many other authors are deemed to contribute to the ongoing field of extensive research in the area 
of AE based structural health monitoring. 
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PART 5: NUMERICAL MODEL OF ACOUSTIC EMISSION GENERATION FROM 

CRACK EXTENSIONS 

Abstract 

The objective of the work performed under this section is to better understand important 
aspects of AE signal generation, propagation, and detection, so as to better relate AE parameters 
with fatigue crack growth in critical aircraft structures. We analyze the characteristics of crack 
related signals in thick and complex structures and develop models that accurately capture the 
physics of AE signal generation during incremental crack growth. 

5.1 Introduction 

The dynamic force history around the tip of a crack when the crack is experiencing 
incremental growth such as under fatigue crack results in the generation of acoustic emission 
signals. The temporal and spatial variation of such forces may be termed “AE source function.”  
Understanding of the AE source function responsible for the generation of acoustic emission 
signals (AE) is important in developing accurate numerical models. While attempts have been 
made in characterizing source functions of idealized sources such as glass capillary break or pencil 
lead break on the surface of plates, no direct relationship between propagating cracks and acoustic 
emission characteristics appear to exist.  

AE signals due to static, quasi-static and fatigue loading as well as wear and corrosion have 
been extensively analyzed for different types of structures [1-5]. However, simulation of the AE 
event source is a challenge that researchers in AE community are attempting to solve [6-11]. In 
1985 Scurby proposed that an AE source must be represented as a point source with two main 
assumptions[10]. Firstly, the source should be self-equilibrating and internal (non-external). 
Secondly, the force due to the defect extension is simultaneous and equal in each direction, sharing 
same time history. Numerical approaches such as finite difference, boundary element method, 
finite element method and finite integral method has been considered in deriving the AE signals 
this amongst others [11-15]. The Finite Element approach is widely accepted amongst the methods 
mentioned above. In case of finite element a point source cannot be utilized due to limitation of 
the type of mesh hence researchers have utilized a band-limited Green’s functions for quantitative 
acoustic emission evaluations. A detailed understanding of utilizing dipole sources in case of finite 
element is discussed by various authors [6, 11, 16, 17]. A mono pole type of loads such as lead 
break and electronic pulser are also utilized to simulate specimen experimentally [14, 18, 19]. 
Thereby, an attempt is made here in understanding the response of different types of sources on an 
aluminum 3D sample to compare with the experimental results.  

5.2 Finite element source function analysis    

A set of numerical simulations were performed to understand the response of the thick 
aluminum bar to the different types of sources. The aluminum bar considered was of 300mm × 
50mm × 9mm size (Figure 10). Since stress waves at the frequencies considered experience 
negligible attenuation in aluminum an elastic finite element model with no attenuation was 
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considered. The model was discretized such that 1mm cube consist of eight solid elements. AE 
waveforms corresponding to five different types of sources were examined. The waveforms were 
generated for stress and displacement history corresponding to a location 25 mm from the source. 
Dipole sources of magnitude of 100 Newton and 1 microsecond duration were applied at the crack 
tip close to the front surface of the thick aluminum sample. The five different types of dipole 
sources along with the resulting waveforms are shown in Figure 2.  

 
 

Figure 10 Sketch of the thick sample with sensors on the front surface 
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Figure 2 X-stress waveforms (RHS) due to five different types of loads (LHS) as observed at same sensor 
location 

The first three sources were step functions, the next one was similar to Gaussian pulse and 
the last one was a triangular pulse. The waveforms generated due to these applied dipole sources 
had different features. Especially the initial pulse of the waveforms carried higher frequency 
components when excited by step functions. The trailing parts of the waveforms were similar with 
minor changes in amplitudes. The triangular and Gaussian type of load gave rise to smoother 
waveforms with lower amplitude signals in comparison. 
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Figure 3 Normal displacement responses of the specimen due to different types of applied loads 

Since the commercially available sensors detect out-of-plane displacements, normal 
displacements were also examined from these numerical simulations for each type of the applied 
sources. The Figure 3 shows normal displacement solution of the numerical model when five 
different typed of loads were applied. The changes observed in the displacements were not 
significant.  
 

 
Figure 4 Distribution of amplitude with respect to the distance from the source of the normal 

displacement component due to the applied triangular load 

Figure 4 shows the variation if the peak amplitude of the waveforms corresponding to 
normal displacements as a function of the distances between the source and sensor. Rapid 
reduction in amplitude of the signal was seen. The rate of reduction with distance seen in this thick 
specimen is significantly larger when compared to thin plates.   
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5.3 Advanced FEM models to simulate crack growth 

In the previous section, the sources of AE signals were represented by known functions. 
The accuracy of such simulations obviously depends on how well such functions represent the 
time history of resultant force corresponding to the actual crack growth event. This time history is 
likely to vary based on the local conditions at the crack tip. Hence, it is necessary to simulate the 
material behavior at the crack tip. In this section results from the initial work on simulating 
incremental crack growth through finite element technique and the corresponding AE waveforms 
are reported.  

The models used in this section are similar to those used in Fracture Mechanics studies 
such as Tie-break, element deletion and cohesive zone modeling. The phenomenon of energy 
release resulting from the process was captured by explicit time integration. In the research, the 
influence of various finite element formulations, element types, element sizes, boundary 
conditions was examined. Various options were attempted to execute crack growth including tie 
break and element deletion. Two dimensional as well as three dimensional finite element models 
were used in these studies. The analyses mostly involved combining implicit analysis to apply the 
quasi-static load and explicit time integration for modeling the wave propagation. The first case 
reported below corresponds to a two dimensional model, 3 mm thick and 600 mm long using 0.5 
mm square elements. Two coincident nodes located on two adjacent elements were tied and failure 
was formulated based on the plastic strain experienced by the two adjacent elements. Figure 5 
shows a waveform obtained from a simulation in which damage growth was simulated by release 
of the two nodes that were initially tied together at the same point, but were released from each 
other when the strain level crossed a specified failure strain. The waveforms correspond to a point 
at a distance of 100 mm from the fracture spot. Other than the quasi-static load on the specimen, 
no other force was applied in this finite element model. The waveform does have the usual 
symmetric and antisymmetric components of a typical AE signal. However, high frequency noise 
is superimposed in the signal. At this point, the source of this high frequency noise is not clear. 
One possibility is the clapping of the released nodes after the tiebreak. Out of plane displacement 
at the same location is shown in Figure 6. 

 

Figure 5 In-plane stress waveform from a 2D model at distance of 100 mm 
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Figure 6 Out of plane displacement waveform from a 2D model at distance of 100 mm 

5.4 Crack propagation modeling by element deletion 

Among the many options considered, the command which was exhaustively attempted on 
several 2D models was simulation of crack growth by means of element deletion across a 
predefined crack path. The 2D model in this case was loaded under a quasi-static type loading. 
The solution to the problem was performed in two steps. The first stage till the fracture stress was 
solved using implicit analysis. The solution from the instance of fracture was performed using 
explicit analysis and the propagation of stress wave was analyzed using explicit time integration. 
Figure 7 shows the snapshots taken from the animation of stress wave propagating from the 
occurrence of damage at the center of the specimen. At the scales shown in this figure the stress 
waves are not clearly visible.  

 

 

Figure 7 Snapshots from stress waveform simulation of element deletion 

 

Figure 8 In-plane stress waveform at 50 mm obtained through element deletion 
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Figure 9 AE waveform from crack growth  

Figure  shows  the waveform corresponding to the horizontal stress component at a location 
50 mm from the damage location. The monotonic stress in the element due to the quasi-static 
loading was removed to reveal the stress wave due to crack advancing. The waveform shown here 
exhibits some similarity with the waveform from the application of pulse type load. For the purpose 
of comparison, waveform from actual crack growth experiment is presented in Figure . The 
fundamental symmetric and antisymmetric modes are contained in the stress waveform over a 
range of frequencies. The velocity of propagation as well as the dispersion behavior was 
comparable with defined dispersion curves of Aluminum in literature. 
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PART 6 SHEAR HORIZONTAL WAVE DETECTION AND ANALYSIS IN FATIGUE 

CRACK GROWTH RELATED ACOUSTIC EMISSION SIGNALS 

Abstract 

       The article demonstrates an ab-initio configuration of piezoelectric sensors to capture shear 
horizontal components of the acoustic emission waveform. The acoustic emissions from simulated 
crack growth and incremental crack growth in a cyclically loaded aluminum panel were detected 
by various acoustic emission sensors. Thereby, the devised sensor performance was assessed in 
comparison to other bonded piezoelectric sensors and resonant frequency acoustic emission 
sensors. Variation of the waveforms as a function of the location of the sensor with respect to the 
source event was considered. Additionally, advantages of Horizontal-shear wave above A0 and S0 
are discussed to show the need of engineered sensors sensitive to detect shear horizontal waveform 
related to acoustic emission signals.  

6.1 Introduction 

The elastic stress wave is generated due to origination and/or expansion of defects within 
a stressed material is referred as acoustic emissions (AE). Over past half century AE signals are 
utilized for structural health monitoring as a powerful Non-destructive technique for detection, 
location and monitoring of cracks. The work of Kaiser [1] and Worlton [2] received great 
enthusiasm by researchers using ultrasonic techniques for nondestructive testing, and the results 
of this work continue to contribute to ultrasonic applications even as of today. However, research 
in acoustic emission testing, which began a few years later, largely ignored the applications of 
Lambs theory in the analysis of acoustic emission data [3-6]. The reasons can be attributed that 
most of the early AE experiments were conducted on small coupon specimens, where the theory 
was not applicable. The second reason was that ultrasonic researchers can transmit a harmonic 
wave to select the mode desired for a given plate thickness, while AE researchers were dealing 
with waves generated by a transient event, preventing such selection [7]. These transient ultrasonic 
waves generated as a result of rapid release of energy, resembles to a low strength pulse load or a 
lead break [8]. Prosser [9, 10] and Gorman [11, 12] discussed the use of plate wave theory in 
testing thin plate-like specimens with acoustic emission. The equation of motion for the small 
deformation in an isotropic plate with thickness h, in terms of displacement is given by: 

 
 and  in the Eqn 1 are Lame' constants,  is del operator [13],  is the mass density and f being 

the body force. According to plate wave theory wave propagation occurs in three modes: the 
extensional mode for which the particle motion is in the plane of the plate and in the direction of 
propagation; the flexural mode for which the particle motion is perpendicular to the plane of the 
plate; and the shear mode for which the particle motion is in the plane and perpendicular to the 
direction of propagation. The velocity for the mode waves are 
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respectively, where,  is bending stiffness, E is Young's modulus, n is Poisson's 
ratio and w is the circular frequency. Although this is true, in case of AE, only two types of waves: 
extensional and flexural modes or more widely known symmetric and antisymmetric modes are 
extensively studied and documented. The restriction was due to the detectability of shear modes. 
For purpose of this article only existence of Shear Horizontal (SH) wave mode is discussed 
theoretically. Mostly these AE signals are detected with the help of surface mounted Piezo-electric 
sensors, optical fibers or resonance sensors. With the present article the authors suggest a strong 
methodology and approach to identify shear waves detected from AE signals. The parameters of 
AE signals that has generated large amount of interest thus far are amplitude, duration, counts and 
energy all related to longitudinal and flexural modes. For the SH modes the information that is 
known and studied thus far is as follows [14-16]: Consider a plate parallel to the xy-plane, the 
displacement field for symmetric and anti-symmetric SH mode is given by 

 
The displacement field is derived from a reduced from of Eqn 1. In Eqn 3 A and B are 

arbitrary constants whereas term q is defined as   where k is the wavenumber 
of the mode. Additionally, the cutoff frequency, phase velocity and group velocity, respectively, 
of SH modes can be derived as follows: 

 
where n = 0; 2; 4; : : : represents symmetric SH modes and n = 1; 3; 5; … antisymmetric SH modes. 
It should be noted that when n = 0 the phase velocity and group velocity equals the bulk shear 
wave velocity, i.e. cps = cgs = cs, meaning the wave is dispersionless. However, it is not same for 
the cases where n = 1; 2; 3; …. Thus it could be concluded that although SH mode overall is 
dispersive the fundamental mode SH0 is dispersionless. Additionally, as per Mindlin and Yang 
[17, 18] unlike extensional and flexural waves SH waves do not observe mode conversion upon 
reflection. Thereby, it is also known that group velocity of fundamental SH mode is higher than 
extensional mode and is lower than that of flexural mode [19, 20]. The statements above signifies 
the importance of detection of the SH waves above extensional and flexural. 

The structure of the article is as follows, the setup of experiments is described at first place. 
Secondly the methodology implemented for bonding the sensors which allows the detection of SH 
modes is narrated. The results signify the working of the sensor array. Furthermore, the results of 
sensor array are compared with results as observed by other types of sensors. The article is thus 
concluded after showing the repetitive nature of the signals.  
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Figure 1. Response of the aluminum plate as observed at 0.3 μsec due to the applied dipole load  

 
Figure 2. Comparison of magnitude of maximum amplitude of S0, SH0 and τmax deducted from the 

numerical results at equidistant elements located at various angles 
 

6.2 Numerical analysis 

A three dimensional aluminum plate specimen containing a central crack under tensile 
loading was modeled using Finite Element approach. The finite element model is a complete 
replication of the actual physical plate with dimensions 600mm ×300mm × 3mm modeled using 
roughly 3.5 million 8 node brick elements. Temporal and spatial resolution was taken into great 
consideration in order to accurately represent ultrasonic waves with frequencies up to 1 MHz. 
Hence, a high time resolution (1ms) and small element size was under prime consideration. In this 
study, a mesh element size of 0.5mm × 0.5mm × 0.6mm was used. The short triangular impulse 
load was applied along the thickness of the plate over the positive and negative x-direction at the 
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crack tip to represent a dipole load. The impulse lasted for 1 s where, at half of a micro second, 
the maximum strength was 1N. A response of such load at 0.3 s on the given specimen is shown 
in Figure 1. After careful observations the SH mode sensors were fabricated and configured [21, 
22].  

 
 

Figure 3. Diagram of the piezoelectric strips arrangement 
 

With the help of numerical analysis a number of important observations were made (Figure 
2). Presence of anti-symmetric modes was negligible due to symmetric load over the thickness. 
The maximum amplitudes of symmetric mode, and shear mode were observed over a range of 
elements located equidistant from the source at 120mm at different angle. Figure 2 signifies that 
the magnitude of maximum amplitude of the SH0 is highest around 45o, whereas, that of S0 is 
highest at 0o. Additionally, the magnitude of SH0 around 45o, as compared to S0 at 0o is about 16% 
higher. The PZT sensors as we know are only sensitive to either xx or yy.  To overcome this 
limitation the magnitude of maximum amplitude for SH0 was derived from the xx and yy by: 

 
Furthermore, the graph of SH0 coincides very well when compared with max at each 

selected elements, hence justifying the usage of SH0 in the form narrated above. Thereby, the 
fabrication of the sensor strip arrays was initiated by etching away the nickel electrode coating on 
both ends of the top surface of the 10 mm × 20 mm piezoelectric wafers, leaving a 3 mm × 2 mm 
electrical contact in the center. A copper shim stock was then glued with Loctite superglue across 
the electrical contacts on the piezoelectric wafers. The next procedure was to carefully cut the 
piezoelectric wafers into 10 mm × 2 mm strips. Five of these strips were then arranged parallel to 
one another with a spacing of 1 mm, but with their center points passing through a 45o line as 
shown in Figure 3. This array was then transferred with a piece of tape to the specimen site which 
had been roughened with sandpaper before being thoroughly cleaned and dried with 90% isopropyl 
alcohol. A thin layer of Loctite superglue was spread over the location and the sensor array was 
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held in place until the adhesive was set. Care was taken to minimize any adhesive welling up into 
the gaps between individual strips so that the strips would act as individual strips, independent of 
stresses experience by adjacent strips in the array. A copper shim stock was then taped down across 
the electrical contacts on the strips and Kapton tape was used to insulate around the sensor array. 
It is important to note that shear sensor array 1 and 2 in Figure 3 are polarized in different directions 
(i.e. the upward face electrode of shear sensor array 1 was glued to the aluminum surface while 
the downward face electrode of shear sensor array 2 was glued to the aluminum surface). 

The configuration and designing of the sensor ensured 1) the piezoelectric strips bonded to 
the specimen surface enables detection of the shear wave, 2) use a high aspect ratio strips targeted 
and placed parallel to x and y-planes acquired the respective shear components, and 3) an array of 
the strips connected together such that a reliable voltage output is generated. It should be noted 
that in this article the emphasis is on the detection of the SH0 rather than the configuration of the 
sensors hence the empirical results are of greater interest. 
 

 
Figure 4. (a) Sketch of the sensor layout (b) experimental setup for pulser simulated emissions 

6.3. Experimental setup 

6.3.1 Simulated experiment 

Prior to testing the ability of the shear sensor array to detect acoustic emissions from fatigue 
induced crack propagation, the sensor array was tested with simulated emissions from a 
piezoelectric pulser. The goal of these initial experiments was to establish the sensitivity of the 
sensor array to impulses arriving at various angles and from varied distances. The sensor array was 
bonded to an aluminum panel as noted above, and electrical leads were connected to the copper 
shim stock and the aluminum plate to measure the potential difference caused by the arrival of the 
acoustic emission wave fronts. The sensor was located 110 mm from the edge and measurements 
were taken with the pulser located at 15 mm increments along the edge up to a distance of 240 
mm, as shown in Figure 4. This arrangement was selected to model the approach of a propagating 
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crack and the response of the sensor to changing distance and angle. The voltage output of the 
sensors was read by a LeCroy WaveJet 324 oscilloscope when triggered by the synchronous output 
from the pulser. A fixture was used to position the pulser along the edge of the specimen, which 
had been sanded, cleaned, and coated with petroleum jelly to ensure effective transmission of the 
impulse. The pulser excitation was set to 400V and the fixture ensured application of the impulse 
at the mid-plane of the specimen. The waveforms were filtered with a 20 MHz bandwidth and 
averaged over 16 events before being saved for further analysis.  

 
Figure 5. (a) Sensor layout for the test (b) Specimen mounted on the MTS (Material Testing system) 

6.3.2 Fatigue test 

Following the pulser tests, testing shifted to detection of acoustic emissions resulting from 
fracture propagation. The experiments were carried out on a panel of 2024-T3 aluminum 
measuring 600 mm × 300 mm × 3 mm thick. A slot 1 mm wide and 62 mm long was cut at the 
midpoint of the long side and the end of this slot was sharpened to a point, producing a stress 
concentration to exceed the fracture toughness of 34 MPa/m to promote crack growth. The 
specimen was clamped tightly into two fixtures, leaving the central 457 mm × 305 mm portion 
exposed, and prior to being loaded into the MTS machine (Figure 5(b)). The specimen was 
subjected to tensile loads cycling from 890N to 43600N with a frequency of 2.5 Hz for a total of 
4500 cycles to produce a 12 mm crack extending from the sharpened point of the slot. 
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The location chosen for the strip sensor array was at a distance of 127 mm from the existing 

crack tip at a 45 angle to the expected direction of travel (Figure 5(a)). A conventional PZT sensor 
was bonded to the specimen at a distance of 127 mm and perpendicular to the nominal direction 
of crack growth. The copper leads from the top of each of these sensors was soldered to the core 
of a coaxial cable, with the outer strands soldered to copper pads adhered to the sample as grounds. 
Two R30 resonance based sensors from Physical Acoustics Corporation were attached to the 
specimen on opposite sides the fracture. The timestamps from two sensors were compared to those 
of the bonded sensor and shear sensor array to validate that the measured signals were originating 
in the area of the crack tip. The layout of the various sensors can be seen in Figure 5. The specimen 
was subject to tensile loads cycling from 2.9 kN to 17.4 kN with a frequency of 1 Hz. The sensors 
were routed through a preamplifier (set at 40dB) to the AEWin software where the threshold for 
collection was set at 35 dB. The waveforms were collected at 5M samples/s for 5000 samples, 
giving a sample time of 1 ms. The waveforms from the shear sensor array and bonded sensor were 
then manually screened for events taking place immediately prior to waveforms recorded by both 
resonant sensors, with the subsequent triggering of the resonant sensors being used to validate the 
origin as the crack tip and not an external source of noise. 
 

 
Figure 6. Waveforms at various angles 

 
6.4. Results and discussion 

 
6.4.1 Simulated results 

The waveforms in Figure 6 were collected from the pulser experiments at 30, 45 and 60 
degrees respectively. The results revealed evidence of the shear wave. As was expected, the shear 
component was small when the distance to the pulser was the greatest (from Figure 4(a)) and the 
angle of approach was small (Figure 6(a)). The different velocities of the various modes is also 
evident in Figure 6(a), where the greater distance has allowed more time for the peaks of the S0 
and SH0 to separate compared to the shorter distance of Figure 6(c). Hence it can be summarized 
that between 30 and 60 degrees, the shear horizontal component is evident but as the angle of 
incidence approaches beyond 45 degrees the shear horizontal component subsides or becomes 
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nonexistent. From simulations, the peak response of the shear sensor was anticipated along an 
angle of 45o. The evidence of the same is found in Figure 6(b). 

While working with various distances and angles, a number of remarks were made. The 
waveforms collected at the farthest distance were the noisiest, but the shear mode peak was clearly 
evident. The shear sensor gave highest peak when located at 51o from the pulser. This discrepancy 
is attributed to the fact that both distance and angle are changing with pulser movement in this 
experiment and the combination of sensor sensitivity and distance achieved a maximum response 
at an angle of 51o and distance of 142 mm. As the distance decreased and the angle increased from 
60o to 90o, the magnitude of the shear component was seen to decrease and then disappear 
completely. The magnitude to the S0 component however continued to increase in this region and 
peaked when the angle between the pulser and the sensor array was 90o and the distance between 
the pulser and the sensor was at its minimum. 

 
6.4.2 Fatigue test results 

Fatigue loading of the aluminum panel yielded a large number of events which were 
registered on the shear sensor array, bonded sensor, and resonant sensors. While noise sources did 
provide many waveforms that could not be confidently attributed to the crack tip region, there were 
a significant number of events where the triggering of the bonded sensor and shear sensor array 
was quickly followed by the triggering of the resonant sensors, indicating an origin at or near the 
crack tip. That the crack was seen to grow of 1 mm during the cycling that produced these 
waveforms is seen as further indication that at least some of these emissions can be attributed to 
crack growth. Furthermore, the waveforms from the wafer sensor, shear sensor array, resonant 
sensor output, were compared to identify the shear horizontal component of the crack growth 
related acoustic emission signals. It is well known that incremental crack growth over a 
microscopic area located at the neutral axis leads to predominantly S0 mode in the waveform and 
similar crack growth located far from the neutral axis leads to predominantly antisymmetric A0 
mode in the waveform. These details were observable in bonded wafer sensor due to wide band 
sensitivity whereas, the resonant frequency sensors lag in providing such information. Hence to 
identify the proximity of incremental crack growth to the neutral axis, the ratio of peak values of 
the A0 component to the S0 component was determined from the PZT waveform sensor. If the 
incremental crack growth is close in proximity to the neutral axis, then the ratio of peak values of 
the A0 component to the S0 component should be generally less than one. However, if the 
incremental crack growth is near in proximity to the surface edge, the ratio of A0 component to S0 
component should be in general greater than one. In the waveforms resulting from fatigue crack 
growth, the ratio of A0 to S0 ranged from 0.4 to 8.5.  
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Figure 7. Typical AE waveforms as observed on shear and wavefr sensors due to crack growth at neutral 

axis 
Figure 7(a) and 7(c), compares acoustic emission waveform with its corresponding wavelet 

analysis of the same event from the shear sensor, where the crack growth appears to be propagating 
at or near the neutral axis, as the ratio between A0 to S0 from the PZT waveform sensor was 0.45. 
Figure 7(a) delineates a SH component of peak amplitude 0.06 V at around 45 s at frequency 
approximately 200 kHz. Additionally, the Figure 7(b) and 7(d), compares acoustic emission 
waveform with its wavelet analysis of the same event from the wafer sensor.  
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Figure 8. Typical AE waveforms as observed on shear and wafer sensors due to crack growth at or near 

surface 
The acoustic waveform (Figure 7(b)) exhibits S0 component of peak amplitude 0.15 V at 

30 s and A0 component at approximately 50 s. Similarly, Figure 8(a) compares acoustic 
emission waveform with wavelet analysis (Figure 8(c)) of the same event from the shear sensor, 
where the crack growth appears to be propagating at or near the surface, as the ratio between A0 
to S0 from the PZT waveform sensor was 8.3. Consequently, the waveform of the same event from 
the wafer sensor (Figure 8(b)) exhibits S0 component of amplitude 0.008 V at 30 s and A0 
component of peak amplitude 0.05 V at approximately 50 s. Whereas, Figures 8(c) and 8(d) 
shows the differences in the frequency pattern generated from their respective signals. Verification 
of the shear sensor array to produce repeatable shear horizontal waveforms were determined by 
plotting five consecutive waveforms obtained during fatigue crack growth after their amplitudes 
were normalized to span the range of -1.0 V to +1.0 V, so that they can easily be compared. To 
obtain this normalize amplitude, all voltage data points in each of waveforms was divided by the 
highest voltage value in the waveform. The five normalized waveforms were superposed in Figure 
9. The figure shows that the actual shear wave components in AE signals corresponding to close 
sequence of crack growth events are nearly identical.  
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Figure 9. Normalized amplitude plot of the first five consecutive shear waveforms 

 

6.5. Conclusion 

The shear sensor array has been shown to clearly capture the shear mode of acoustic 
emission during both pulser simulation of acoustic emissions and the actual acoustic emissions 
emanating from the tip of a crack propagating due to cyclical loading. Commercial type sensors 
are more sensitive to asymmetrical component of the acoustic emission waveform and most noise 
signals (friction) have large A0. Bonded wafers are less sensitive to A0 and hence have better noise 
performance, but both are incapable of detecting SH0 component of the acoustic emission 
waveform. While this performance shows promise for the sensors, the level of noise present made 
clear identification of the wave element difficulties. The electrical connections to the sensors, the 
paths to ground, and the cable shielding are all being refined in an effort to reduce electrical noise 
in the signals. In addition to the electrical noise, the shear sensor arrays observed increase in noise 
and decreased sensitivity to the shear component during the later stages of the cyclical loading 
tests is believed to be a result of degraded bonding between the shear sensor array and the 
aluminum specimen. 
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PART 7 ANALYSIS OF EXPERIMENTALLY GENERATED FRICTION RELATED 

ACOUSTIC EMISSION SIGNALS  

Abstract 

Acoustic emission signals generated by sliding friction between two flat steel surfaces are 
characterized. A test fixture to simulate the reciprocating motion between the two surfaces under 
controlled conditions is developed. Sliding friction under several combinations of surface 
roughness, relative velocity, and normal pressure was examined. Wideband AE sensors and 
instrumentation were used for acquiring and analyzing the acoustic emission signals. Acoustic 
emission events occurred primarily during the slip portion of the stick-slip cycles. AE waveform 
features obtained during these experiments were indicative of the tribological conditions. 
Frequency components in excess of 700 kHz were seen during these experiments. The 
characteristics of the experimentally observed acoustic emission signals were in general agreement 
with earlier numerical predictions. Friction related acoustic emission signals were distinguishable 
from those from other sources such as fatigue crack growth. The characterization of friction related 
acoustic emission signals is likely to be of value in many tribological and structural health 
monitoring applications. 

7.1 Introduction 

Acoustic emissions (AE) are stress waves generated in solids due to release of strain energy 
by a variety of mechanisms.  A number of mechanical processes, including incremental crack 
growth, slip between surfaces that are in contact, and phase transformations in crystalline 
materials, can generate acoustic emission signals. AE signals carry information about the details 
of the physical processes that are responsible for such signals. Analysis of acoustic emission 
signals have been traditionally used for nondestructive testing and monitoring structures during 
qualification tests. A number of studies in the past have analyzed AE signals to understand the 
individual processes involved in damage growth in materials such as crack growth. Machinery 
condition monitoring using AE technique has received significant attention in the recent past. In 
such studies, AE signals have been used to recognize the extent of degradation of the contact 
surfaces, such as those in bearings and gears.  

AE signals are generated during sliding motion in bearings, gears, and turbine blade root 
joints as well as bolted and riveted joints. Changes in the pattern of AE signals have been used in 
the past to indicate surface damage. These surfaces, while smooth on a macroscopic scale, have 
roughness or asperities whose dimensions may be of the order of microns. During the relative 
motion between two surfaces in contact, the asperities on one surface attempt to slide past the 
asperities on the opposite surface, which results in the collision between these asperities and 
sudden loading and unloading of regions in their immediate vicinity. The interactions between 
pairs of asperities may last a very short duration, of the order of few microseconds. The transient 
forces accompanying such interactions between asperities are a prolific source of elastic waves 
that are sensed as acoustic emission signals. Further, such relative displacement between surfaces 
can also lead to plastic deformation and fracture of asperities and accumulation of wear particles 
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between surfaces, each of which can also generate acoustic emission signals. Baranov [1] 
summarizes the sources of AE during friction conventionally into three groups: impact of friction 
surface at microscopic level (asperity collision), surface damage, formation and rupture of 
adhesion junctions. 

Repetitive relative motion of the surfaces over longer periods leads to change in the 
roughness and texture of the surface, and it can be expected that acoustic emission signals may be 
indicative of these changes. The first group of papers reviewed here examines the relationship 
between the acoustic emission signal characteristics and the conditions prevailing at the contacting 
surfaces. Dornfeld [2] performed early studies to understand the relationship between the AE 
signals and sliding friction. Jibiki et al [3] studied AE signals generated by friction over a small 
contact area between two cylinders arranged such that their axes were 90 degree apart.  The friction 
noise for repetitive cycles of sliding at “point” contact of the cylinders was recorded using a 
microphone. The main frequency component of the detected acoustical signal was a little over 1 
kHz. The amplitude of the AE signal was found to increase as the fretting stroke or the frequency 
was increased.  Further, the amplitude of the AE signal was also found to increase with the level 
of surface wear. Ferrer et al [4] studied the acoustic emission waves generated during transition 
from static to dynamic friction. Resonant frequency AE sensors were used in these experiments to 
record the signals. They experimentally simulated stick-slip conditions between a pair of pads and 
a flat plate during a single stroke and recorded the resulting acoustic emission signals. The different 
segments of the recorded waveforms were related to different segments of the slip process 
including micro-slip, partial slip and gross slip. Abdelounis et al [5] examined noise generated by 
friction between two flat surfaces using microphones. As the surface roughness was increased, the 
amplitude of the acoustical signal was found to increase as a logarithmic function of the surface 
roughness.  The relationship between AE signal characteristics and friction and wear was also 
studied by Hase [6] and Hisakado [7]. Parameters of the signals such as count, count rate, 
amplitude were considered in the analyses. 

Theoretical models of acoustic emission signal generation due to friction are also available.  
Fan et al [8] analyzed the relationship between AE energy and the surface characteristics, contact 
load, and sliding velocity. Baranov et al [9] determined the AE activity levels in terms of acoustic 
emission counts, count rate, energy corresponding to different conditions that exist at the contact 
surfaces. Alam et al [10] numerically simulated the AE signal generation and propagation in a flat 
plate. Detailed characteristics of AE signals corresponding to different conditions prevailing at the 
contact surface were determined. 

The second group of papers is on the use of acoustic emission for diagnosis of the condition 
of machinery, specifically surface degradation in bearings and gear trains. Li [11] used pattern 
classification to monitor defects in bearings using AE signals. Al-Dossary [12] investigated the 
variation in RMS voltage of AE bursts to quantify implanted defects in roller bearings. 
Measurement and analysis of AE signals were used in condition monitoring of gears [13-14]. 
Experiments based on back-to-back gearbox setup were used to monitor changes in AE RMS 
voltage and energy.  
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Jayakumar [15] provided a review of application of AE technique for online monitoring of 
a variety of manufacturing processes. It was found that acoustic emissions generated during 
different forming processes provide useful information for detecting die wear and cracking, 
friction properties, state of lubrication, and others. Meriaux [16] studied crack propagation 
mechanisms in fretting fatigue using acoustic emissions. In addition, AE signals resulting from 
sliding motion, friction and wear in different mechanical elements were studied. [17–21] 

The above studies specifically considered acoustic emission signals due to relative motion 
between surfaces in contact. In addition, some findings from other studies, which directly look at 
the relationship between the surface features and coefficient of friction, are also relevant for 
interpreting acoustic emission signals. Menezes [22] examined the effect of surface texture and 
wear on the coefficient of friction.  The coefficient of friction was found to be independent of the 
value of roughness but showed significant dependence on texture.  Philipon [23] studied the 
coefficient of friction at high sliding velocities, typical of a projectile sliding against a surface. 
Other studies dealt with the friction-velocity relationship [24], modeling of multi-asperity contacts 
[25-26], and fretting fatigue analysis [27-28]. The analysis of the frictional processes operating at 
various length scales, ranging from nanometers to macro scale, has been studied using a variety of 
tools [29-31]. Preliminary results from the current study [32] provided an understanding of friction 
related AE signals. 
 In the present paper, sliding motion between two dry flat steel surfaces in contact is 
examined.  AE signals generated by the friction between the two surfaces are measured and 
analyzed. The objective of this work is to examine if AE signals carry recognizable features that 
can reveal the conditions prevailing at the interface where frictional sliding is taking place. The 
conditions include surface roughness, normal pressure as well as the duration and velocity of 
sliding. AE signals were acquired for eight different combinations of these parameters. Features 
of acoustic emission waveforms due to sliding motion such as amplitude, frequency, and duration 
for different combinations of test conditions are examined.  These results are likely to be of 
relevance for AE based machinery diagnostics and structural health monitoring. Details of the 
work are presented in the following sections.  

7.2 Experimental test setup 

7.2.1 Test fixture 

Figure 1 shows the test fixture designed for studying acoustic emission signals generated 
due to friction. This fixture is capable of simulating friction between surfaces under controlled 
conditions including normal pressure and sliding velocity. The fixture consisted of two identical 
friction pads pressed against the opposite surfaces of a long steel bar near its midpoint. The relative 
motion between the friction pads and the steel bar could be controlled from about five microns to 
several millimeters. The fixture is mounted on 810 Material Test System (MTS) machine and the 
friction pads could be subjected to either unidirectional or oscillatory motion with respect to the 
steel bar, as shown in figure 2. The results reported in this paper were obtained while the pads 
were subjected to sinusoidal motion relative to the steel bar.  
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Fig. 1. Friction test fixture 

 
Cyclic loading resulted in repeated stick-slip motion between the pads and the bar. The 

bar’s dimensions were 530 mm X 50 mm X 3 mm, as shown in figure 3, and it was cut from 
precision ground A2 tool steel bar with surface roughness, Rab, of 0.48 µm and Rzb of 2.76 m.  
Pairs of friction pads with two different surface roughness values were used in this study. The 
surface roughness, Rap, of the first and second pairs were respectively 0.15 µm and 1.54 µm. These 
surface roughness measurements were taken parallel to the direction of relative sliding between 
the pads and the bar. The steel friction pads were 50 mm long and their contact surfaces were flat 
with round corners, as shown in figure 4. The Rockwell hardness values for the pads and the steel 
bar were respectively HRB 123 and HRB 96. 

The bar was instrumented with wide band and resonant frequency acoustic emission 
sensors placed on either side of the friction region. The side mountings which held the friction 
pads were designed to be stiff compared to the steel bar participating in the friction process. The 
contact pressure between the pads and the bar was monitored using a load cell. The readings of the 
load cell during the cyclic motion were monitored on an oscilloscope.   
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Fig. 2. Schematic representation of the test fixture Fig. 3. Steel Bar Dimensions 
 
 

 

 
Length  = 50 mm 

Fig. 4. Dimensions of friction pads 
 

7.2.2 AE instrumentation 

Four AE transducers were used to detect the friction related acoustic emission signals. The 
first set of transducers were Physical Acoustics Corporation R30 sensors with a resonant frequency 
of 300 kHz. The second set of transducers were rectangular piezoelectric wafers bonded to the 
surface of the steel bar as shown in figure 3. These sensors were shown to have wide band 
characteristics [33] and could detect signals up to a frequency of 700 kHz. The performance of the 
sensors was verified using pencil lead break tests before each data acquisition. The two types of 
sensors had comparable sensitivities, but their frequency responses were widely different. Sensor 
locations are shown in figure 3. AE source location capability with sensors positioned on opposite 
sides of the friction region helped in isolating signals of interest in the present study. The results 
included in this paper were obtained using the bonded piezoelectric wafer sensors. Most of the 
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data acquisition was performed using Physical Acoustics Corporation preamplifiers with 40 dB 
gain and PIC-2 data acquisition system. The frequency response of this instrumentation was 
calibrated in the laboratory to interpret the AE waveforms that will be presented in the following 
sections. The gain for the PAC preamplifiers was highest and flat between 200 kHz and 400 kHz. 
The gain at 100 kHz was found to be 37% of the gain at 200 kHz. At frequencies of 500, 600 and 
700 kHz, the gain for the preamplifiers was respectively 60, 33, and 21% of the gain at 200 kHz. 
Physical Acoustics Corporation PIC-2 data acquisition system was used to acquire the complete 
waveforms at a rate of 5 x 106 samples/second. These waveforms were further processed on a 
personal computer. A 35 dB threshold was set for acquiring AE signals.  

7.2.3 Test procedure 

The results included in this paper correspond to sinusoidal motion of the friction pads while 
the steel bar was held stationary by gripping at its top end. The steel bar was free at the bottom 
end. Acoustic emission signals corresponding to different combinations of parameters such as 
surface roughness, normal pressure, stroke length, and velocity were recorded and examined. The 
range of variations in these parameters governing the friction condition is listed in table 1. Table 
2 lists the eight different combinations of friction parameters for which acoustic emission data 
were acquired. The first four tests with prefixes RS, involved the steel bar with relatively rough 
surface (Rab = 0.48 m) and friction pad with relatively smooth surface (Rap = 0.15 m). The last 
four tests with prefixes RR involved the same steel bar with relatively rough surface and friction 
pads of comparable roughness (Rap = 1.54 m). These four tests had the same pattern of normal 
pressure, stroke length applied at the lower grip, and cyclic frequency as the first four tests.  The 
axial load generated in the bar depended on the contact pressure, surface roughness, axial 
displacement, and the stick-slip conditions prevailing at the frictional interface. The axial load was 
measured by the MTS load cell. The relative displacements of the lower grip as well as the 
frictional force transferred through the friction pads during the reciprocating motion were recorded 
by the acoustic emission data acquisition system.  

Two sets of experiments, termed Set A and Set B, were performed separately to measure 
different parameters of interest. The contact surfaces used in these two sets had nominally identical 
roughness values.  Tests on Set A were performed to check if measurable surface degradation was 
taking place during the tests RST1 to RST4 listed in Table 2. Surface roughness values at the initial 
condition as well after 1000, 1300, 1600, 1900, and 2200 cycles were measured.  Both Ra and Rz 
values were measured for the pair of pads and the bar at 40 different spots distributed over the 
contact area. These results, presented in the next section, indicate that the surface roughness values 
remained essentially unchanged during these experiments. Further since the hardness of the bar 
was significantly lower than the friction pads (HRB 96 for the bar versus HRB 123 for friction 
pads), if measurable wear occurred during these experiments, the bar surface would have been the 
first to indicate such changes.  Hence at the end of eight segments of cyclic loading used in Set B, 
the final roughness values of the steel bar, were measured at 40 locations and was found to be 
substantially same as that of its initial value. 
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Individual tests corresponding to each of the eight combinations of parameters listed in 
Table 2 lasted only 300 cycles of reciprocating motion to ensure that the surface roughness 
remained nearly constant during these tests. The pair of surfaces comprising of the bar (Rab = 0.48 
m) and smooth pad (Rap = 0.15 m) were subjected to 1000 cycles for initial test setup and four 
segments of 300 cycles each for the four tests RST1 to RST4. Similarly the pair of surfaces 
comprising of the bar (Rab =0.48 m) and rough  pad (Rap = 1.54 m) were subjected 1000 cycles 
for initial test setup and four segments of 300 cycles each for the four tests RRT1 to RRT4. Further, 
these surfaces were also cleaned before the fixture was reassembled for the next segment of the 
test. 

 
Table 1. Parameters for which AE signals were generated 

 Friction Parameter Value 1 Value 2 

Contact pressure, P, MPa 2 4 
Loading frequency, F, Hz 0.5 1 
Axial grip disp. amplitude, A, 
mm 0.25 0.5 
Bar surface roughness, Rab, µm 0.48 --- 
Friction pad roughness, Rap, µm 0.15 1.54 

 
Table 2. Combinations of parameters for which AE signals were generated 

Test 

Roughness, 

Rap, µm 

Pressure, 

P, MPa 

Frequency, 

F, Hz 

Amplitude, 

A, mm 

RST1 0.15 2 0.5 0.25 
RST2 0.15 2 1 0.5 
RST3 0.15 4 0.5 0.25 
RST4 0.15 4 1 0.5 
RRT1 1.54 2 0.5 0.25 
RRT2 1.54 2 1 0.5 
RRT3 1.54 4 0.5 0.25 
RRT4 1.54 4 1 0.5 

 

7.3 Results and discussion 

7.3.1 Surface roughness of contact surfaces 

The results from cyclic loading of surfaces in set A are shown in Figure 5. The surface 
roughness values Ra and Rz were measured for the friction pads corresponding to the conditions in 
tests RST1 to RST4, each lasting 300 cycles, and their variation is plotted in Figure 5 (a) and (b). 
The percentage variation in the values of Ra and Rz over the 1200 cycles, respectively were 5.8 % 
and 5.4 %, suggesting that the surface conditions remained nearly constant. This level of variability 
was seen between different regions of the same surface.  
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(a) 

 
 

(b) 
Fig. 5. Surface roughness measurements (a) Ra and (b) Rz 

7.3.2 Stick-slip and acoustic emission events 

Figure 6 shows the variation of bottom grip displacement as well as the load transferred 
through the frictional interfaces for different test conditions. While the bottom grip was undergoing 
sinusoidal displacement, the load transferred across the frictional interface, as measured by the 
MTS load cell, was deviating significantly from the sinusoidal shape, indicating slip at the 
frictional interfaces. In these figures, downward displacements are considered positive. In figure 
6(a), as the bottom grip moves from point A to point B, there is a proportional increase in axial 
load induced in the bar, indicating that the steel bar’s surface that is in contact with the friction pad 
was experiencing essentially the same displacement as the pad – stick phenomenon. However, at 
point B, the proportionality between the displacement and the load ceases. In the segment B to C, 
the axial load induced in the steel bar essentially remains constant while the displacement keeps 
increasing – this is the slip phenomenon. As the grip reverses direction at point C and moves 
towards point D, the load starts following the displacement in a proportional manner – this is the 
stick phenomenon.  At point D, there is slip between the plate and the friction pad in the reverse 
direction. This stick-slip phenomenon repeated itself without recognizable variation throughout 
the nearly 300 cycles applied at this load. Stick-slip phenomenon for other combinations of surface 
roughness and normal pressure are shown in figures 6 (b) to (d).  A comparison of figures 6(a) and 
(b) or (c) and (d) indicates that the surface roughness of the friction pad (Rap = 1.54 µm vs. Rap = 
0.15 µm) has a small influence on the load level at which gross slip begins.   
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(a) RST1 

 

 
(b) RST3 

 

 
(c) RRT1 

 

 
(d) RRT3 

 
Fig. 6. Relationship between the lower grip displacement and the axial load in the steel bar indicating the 

repetitive stick and slip intervals during cyclic loading of four different tests 
 
The displacement of the friction pads appeared to follow the same sinusoidal shape of the 

bottom grip. However, the magnitude of displacement was much smaller because during the 
“stick” period, the bar was extending and contracting due to the applied load. Based on the 
maximum load generated on the steel bar and corresponding displacement of the steel bar’s surface 
that is in contact with the friction pads, the amplitude of displacement of the friction pads for each 
of the cases RST1 and RR
distance of slip for the cases of RST1 and RRT1 is about 18 μm; for the cases of RST3 and RRT3 
is about 4 μm. 

Figure 7 shows the plot of the time of occurrence of AE events during the stick-slip cycles 
for the case of RRT2 (F = 1 Hz, Rap = 1.54 µm, A = 0.5 mm, P = 2 MPa).  Red circles on the load 
curve indicate the instants at which AE events were recorded. AE events occurred predominantly 
during the slip portions. No significant variation of the AE pattern was seen over the nearly 100 
cycles, corresponding to the duration of the test.  
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Fig. 7. The time of occurrence and amplitudes of AE events for RRT2 

 
During each of the slip segments of the cyclic motion, such as BC in figure 6(a), whose 

duration is one second, a large number of acoustic emission events are likely to be generated 
because of the numerous collisions of asperities present on the friction pads with those on the steel 
bar. However, in these tests, on average about 5 acoustic emission events of varying amplitudes 
and durations were recorded per half cycle. It is likely that among many AE events generated 
during this period, only a few that  exceeded the threshold value were recorded. In addition, for 
the events recorded, there might be a superposition of a number of acoustic emission signals 
corresponding to numerous individual collisions occurring either simultaneously or in short 
succession within a few tens of microseconds of each other.  

7.3.3Waveforms corresponding to lead-break 

Acoustic emission waveforms are determined by the characteristics of the source event, the 
geometry of the medium through which the stress waves travel before reaching the sensor, and the 
frequency response of the sensor and instrumentation. Acoustic emission waveforms are a complex 
superposition of signals with a range of frequencies. The individual frequency components are not 
readily recognizable from the waveforms. However, the wavelet diagrams indicate the presence of 
different frequency components as well as their arrival times. Even though all the frequency 
components are generated at the same time at the source, they travel with different velocities and 
hence arrive at different times at the sensor. 
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Fig. 8. AE waveform and wavelet diagram for Lead break event  
 

In order to have a baseline for interpreting the friction related waveforms, the signal 
characteristics corresponding to a lead break test are first presented in figure 8. This comparison 
is helpful in isolating the features related to the source events. Here both the waveform and the 
wavelet diagram are included. AGU Vallen wavelet software is used to obtain the wavelet 
diagrams [34].  A lead-break test is commonly used to verify the acoustic emission test setup and 
is assumed to simulate discrete events such as an incremental crack growth.  A 2 mm long 0.5 mm 
diameter HB pencil lead was broken at the center of the steel bar’s friction area to generate the 
waveform. These waveforms had peak amplitude of nearly 2 volts and started with large initial 
amplitude, after which there was a rapid drop in amplitude. There is a second segment after about 

signal amplitude between the initial signal and the reflections. The different frequency components 
of the signal and their arrival times are clearly seen in the wavelet diagram. 

 
 
 

7.3.4 Friction related waveforms 
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Nearly 70% of the AE events recorded during these tests originated from the region of 
frictional contact between the friction pads and the steel bar.  Signals originating from other 
locations were excluded from this analysis based on source location. Figure 9 shows a typical 
waveform corresponding to friction related AE event obtained during the slip phase of test RST4 
(Rap = 0.15 µm, P = 4 MPa, A = 0.5 mm, F = 1 Hz).  Most waveforms are characterized by large 
amplitude at the start of the waveform followed by gradually decreasing amplitude, which 
extended to a little over 500 µs.  Further, as in lead-break tests, the arrival of the reflections from 
the ends of the bar could also be observed. A major difference is that the quiet period between the 
initial pulse and reflections  in lead-break events was not present in the friction events. 

The peak amplitudes of individual friction related AE events rarely exceeded a level of 50 
dB for the frequency band above the 100 kHz used in these tests. The amplitudes of friction related 
events corresponding to RRT2 are shown in figure 7. Friction related events under other conditions 
reported in this paper were also having similar amplitude distributions. The relatively low 
amplitudes seen in these experiments can be attributed to the modest normal pressures used in 
these experiments, chosen mainly to avoid surface damage during these experiments and the 
deliberate choice of frequency band above 100 kHz to avoid ambient noise. 
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Fig. 9. AE waveform and wavelet diagram for friction related event from test RST4 

7.3.5 Crack related waveforms  
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In sections 3.2 and 3.3, waveforms from lead-break and friction related acoustic emission 
events were described. For comparison, figure 10 shows a waveform and its wavelet diagram 
obtained from incremental crack growth in a steel bar of the same geometry as the one used in the 
friction tests and instrumented with the same type of sensors. The steel bar used is 75 mm longer 
than the one used for the friction experiment.  
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Fig. 10. AE waveform and wavelet diagram for crack growth event 
 
 

Crack related events were, in some respects, similar to that of lead-break waveforms. These 
waveforms are characterized by a strong initial component followed by a relatively quiet period 
after which reflected signals are seen. This, however, is in contrast to friction related signals for 
which there is sustained signal amplitude between the initial segment and the segment due to 
reflections.  Comparison of the wavelet diagrams corresponding to the lead break test and the crack 
growth tests with the wavelet diagram due to the friction related signal is useful in understanding 
the source mechanisms in these three cases. The first two types of events are generated by a single 
impulse and the resulting initial segment is well separated from the segment corresponding to 
reflections from the specimen ends, as seen clearly in the waveforms as well as wavelet diagrams. 
In the case of friction related signals, the sustained activity between the initial segment and the 
reflected segment is indicative of multiple impulses occurring within microseconds of each other. 
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Such a process of simultaneous or sequential interaction of asperities belonging to the contact 
surfaces has been postulated in the literature [1, 8-10].  

7.4 Characterization of the friction related acoustic emission waveforms 

Recent studies have revealed that acoustic emission technique can be useful tool to monitor 
surface damage in bearings and gears. In the following section, we will examine whether the 
features embedded in the acoustic emission waveform are indicative of differences in the operating 
conditions at the interface of such surfaces during their relative motion. The study included the 
acquisition and analysis of AE signals corresponding to different combinations of the parameters 
listed in Table 1. The effect of the surface roughness of the friction pad, the normal pressure 
between the contact surfaces, and the sliding velocity on the acoustic emission waveform and its 
frequency content are examined. 

The amplitude distributions of AE events did not have recognizable variations for the 
different tests performed under this study.  Figure 11 shows the amplitude distribution for the cases 
RST2 and RRT2. However, it should be noted that the normal pressure values used in these 
experiments were relatively small with limited range of variation. Further, the frequency range 
that is considered here is above 100 kHz for the most part so as to avoid ambient sources of 
acoustical signal which dominate in the lower frequencies.  

 

 
(a) 

 

 
(b) 

Fig. 11. Comparison of amplitude distribution for different tests (a) RST2 and (b) RRT2 
 

7.4.1Effect of surface roughness 

The features of the AE signals corresponding to variations in the operating conditions such 
as surface roughness, normal pressure, and sliding velocity that are highlighted in the following 
sections were identified after examining a collection of waveforms and their wavelet diagrams 
corresponding to each type of test. To obtain a consistent interpretation, for each test condition, 
the average pattern seen in 25 randomly selected waveforms was used.  
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Fig. 12. Effect of surface roughness shown by wavelet diagrams (a) test RST1  (b) test RRT1 
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Fig. 13. Effect of surface roughness shown by wavelet diagrams (a) test RST3  (b) test RRT3 
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The differences between the acoustic emission signals generated in test RST1 (Rap = 0.15 
µm) and test RRT1 (Rap = 1.54 µm) are considered first. The only difference between these two 
tests was the surface roughness of the friction pads. Twenty-five randomly selected waveforms 
obtained during each of the two tests were used to examine the frequency-time patterns of the AE 
signals. To highlight the common features found in these sets, a representative waveform and its 
wavelet diagram from each test are shown in figure 12. A similar comparison is also between the 
two tests and the results are shown in figure 13.  

The wavelet diagrams corresponding to AE signals from the RS cases included in figure 
12 and figure 13 show the presence of components in excess of 500 kHz at the leading edge of the 
signals whereas the wavelet diagrams corresponding to AE signals from the RR cases had no 
significant amplitude above this frequency range. It was found that, for tests involving smooth 
pads, more than 70% the signals had this distinct high frequency component while only 20% of 
the waveforms for rough pads had such components, irrespective of the amplitude of the signal.  

It should also be noted that the sensors used in these experiments were not sensitive to 
frequencies greater than 700 kHz. Further, as noted earlier, the instrumentation used for these 
experiments had reduced sensitivity for frequency components outside 200 kHz to 400 kHz band. 
The presence of frequency components from 600 kHz to 700 kHz for RST1 and RST3 are 
significant considering that the gain at 600 and 700 kHz were only 33% and 21% of the gain in 
the frequency band spanning 200 to 400 kHz. These differences in the frequency content seen in 
the wavelet diagrams were not easily observable in the FFT diagram of these signals. The 
dependence of the frequency content of the AE signal on the surface roughness was predicted from 
an earlier numerical simulation of friction process [10].  

Another observation from these tests is that RS combination gave rise to larger number of 
AE signals compared to RR combinations for otherwise similar conditions.  The envelopes 
connecting the peaks of individual oscillations in the AE signal indicate the presence of multiple 
events and reflections of the waveforms from specimen ends. There were only minor differences 
in the envelopes of the AE signals obtained within each test. In addition, apart from the differences 
observed in the frequency content described above, there were no other recognizable differences 
between the envelopes obtained for the smooth pad versus those for rough pads.  

7.4.2 Effect of sliding velocity 

The velocity during the relative motion between the mating surfaces in the present study 
depended on the frequency and amplitude of the reciprocating motion while the other parameters 
were held constant. For such a comparison, the wavelet diagrams corresponding to the RRT1 case 
(F=0.5 Hz, A = 0.25 mm) is presented with those for the RRT2 case (F=1 Hz, A = 0.5 mm). The 
doubling of the loading frequency and displacement amplitude for RRT2 results in quadrupling of 
the average sliding velocity from RRT1 to RRT2. Corresponding waveforms and wavelet diagrams 
are shown in figure 14(a) and (b). These figures show that signals with frequency content in the 
range of 100 to 300 kHz decrease and those in the range of 400 kHz and above increase as the 
sliding velocity is increased. A similar influence of the increase in the sliding velocity on the 
increase in the AE frequency components was observed also between RST1 and RST2. These 
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tendencies were seen in a majority of the signals collected. However, there were exceptions to 
these trends in a few of the AE signals. These trends were also predicted in the in finite element 
simulation of friction related AE signals in the earlier study [10].  
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Fig. 14. Effect of sliding velocity shown by wavelet diagrams (a) test RRT1  (b) test RRT2 
 

7.4.3 Effect of normal pressure 

The influence of the normal pressure on the AE signal is examined by comparing the results 
for RRT1 for which the normal pressure was 2 MPa with those of RRT3 for which the normal 
pressure was 4 MPa.  These results are shown in figures 15 (a) and (b). In these cases, the other 
parameters had identical values. The main difference between the two waveforms was in the 
intensity of the AE signal between the first arrival and the reflections from the specimen ends. For 
the case of RRT3, there was significantly greater signal strength before the arrival of the reflection. 
Increase in the normal pressure also appeared to cause a small increase in the frequency content of 
the AE signals. At higher normal pressures, greater interference between the asperities in the 
surfaces in contact is likely to be present. As a result, a greater number of asperities are likely to 
participate in generating the AE signals.  
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Fig. 15. Effect of normal pressure shown by wavelet diagrams (a) test RRT1  (b) test RRT3 
 

7.5 Friction parameters and AE signal characteristics 

By limiting the number of cycles used for each of these tests, surface damage and 
accumulation of wear particles was kept at a minimum.  As mentioned earlier the surfaces were 
cleaned in between the tests to remove loose particles. Hence, the majority of AE events from 
these tests are attributed to interaction of asperities. Acoustic emission instrumentation used in 
these experiments used a frequency range of 100 kHz to 700 kHz. This frequency range was 
selected to avoid saturation of the amplifier by lower frequency components and to minimize 
signals from ambient noise. In these tests, variations of the tribological parameters such as surface 
roughness, sliding velocity, and normal pressure were only very modest. The results presented in 
this section show that even for these modest changes in the friction conditions, clearly recognizable 
differences in the features of the AE waveforms were present. In addition, the friction related 
acoustic emission signals were distinguishable from signals from other sources such as crack 
growth.  

Summary and conclusion 

In this paper we explore if the parameters controlling the interaction of two contacting 
surfaces during the friction process are recognizable in the acoustic emission waveforms and if 
those features could be clearly identified. A test fixture to simulate the reciprocating motion 
between two flat surfaces in contact was developed. In this fixture, the parameters such as normal 
pressure, surface roughness, sliding velocity could be closely controlled. Acoustic emission signals 
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generated by the friction process for different combinations of surface roughness, normal pressure, 
and the velocity of sliding were evaluated.  Friction related waveforms, in general, depicted 
patterns that were consistent with multiple asperity interactions during slip. The basic features of 
friction related AE signals were distinct from those of other AE sources. Clear and systematic 
changes in the signal characteristics that could be related to the parameters operating at the 
frictional interface were found. Acoustic emission frequency components well in excess of 700 
kHz were generated by the friction process.  Frequency component of the signals was found to 
increase as the roughness of one of the surfaces was decreased. In addition, the frequency content 
was also found to increase with the increase in sliding velocity. AE signal duration appears to 
increase with an increase in normal pressure. AE behavior of the friction process observed during 
these experiments was mostly in agreement with the earlier numerical predictions [10]. The results 
obtained in this research indicate that acoustic emission technique can be a sensitive tool for 
monitoring the condition of surfaces.  
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PART 8: MACHINE LEARNING TECNIQUES FOR STRUCTURAL HEALTH 

MONITORING 

Abstract 

We report on work that is part of the development of an agent-based structural health 
monitoring system. The data used are acoustic emission signals, and we classify these signals 
according to source mechanisms, those associated with crack growth being particularly significant. 
The agents are proxies for communication- and computation-intensive techniques and respond to 
the situation at hand by determining an appropriate constellation of techniques. It is critical that 
the system have a repertoire of classifiers with different characteristics so that a combination 
appropriate for the situation at hand can generally be found. We use unsupervised learning for 
identifying the existence and location of damage but supervised learning for identifying the type 
and severity of damage. The supervised learning techniques investigated are support vector 
machines (SVM), naive Bayes classifiers, and feed-forward neural networks (FNN). The 
unsupervised learning techniques investigated are k-means (with k equal to 4, 5, and 6) and self-
organizing maps (SOM, with 4, 5, and 6 output neurons). For each technique except SOM, we 
tested versions with and without principal component analysis (PCA) to reduce the dimensionality 
of the data. We found significant differences in the characteristics of these machine learning 
techniques, with a general trade-off between accuracy and fast classification runtime. This trade-
off can be exploited by the agents in finding appropriate combinations of classification techniques. 
The approach followed here can be generalized for exploring the characteristics of machine-
learning techniques for monitoring various kinds of structures. 

8.1 Introduction 

Threats to the integrity of a structure, such as corrosion and cracking, produce challenges 
for the safety and operational capability of the structure as well as costs involved in monitoring 
and maintaining it. Structural health monitoring (SHM) provides real-time data and consequently 
information on the condition of the monitored structure. The research reported here has been 
carried out as part of the NASA Center for Aviation Safety (CAS) at North Carolina A&T State 
University. The structures of interest are aircraft although experiments at the stage reported here 
are performed on laboratory specimens. SHM is particularly important for aircraft as structural 
failure can result in massive loss of life. In our approach, agents typically serve as proxies for 
techniques with intensive communication or computation requirements. Agents negotiate to 
determine a team of techniques for solving the task at hand, and they communicate a workflow to 
a workflow engine, which actually carries out the tasks on the data streams provided. The agents 
provide flexibility and intelligence so that combinations of techniques suitable for the situation at 
hand may be determined. It is thus important that a variety of classifiers with different 
characteristics be available. For example, some will be fast but not very accurate while others will 
be slow but very accurate. The data we use are acoustic signals, and the condition we address is 
crack growth. As the source of the signals is unobservable, classifying acoustic signals by their 
source must be based on machine learning. Note that sensing here is passive: there is no energy 
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input required to generate or sense the signals (although energy is required to store and 
communicate the data).  

In SHM, data is interpreted using parameters that are trained with machine-learning 
techniques. For our experiments, a correlation coefficient is computed between an observed 
waveform and seven reference waveforms which are generated from numerical simulations of 
acoustic emission events. The vector of all seven correlation coefficients characterizes the 
waveform. Our training set consists of 108 samples from the work reported by Esterline and his 
colleagues [1]. Our test set consists of 1169 signal waveforms (samples) coming from crack growth 
experiments in a steel bar.  

Worden and his colleagues [2] have formulated seven axioms for SHM that capture general 
aspects that have emerged in several decades of experience. Of particular interest is their Axiom 
III, which states that unsupervised learning can be used for identifying the existence and location 
of damage but identifying the type and severity of damage can only be done with supervised 
learning. Supervised learning tries to generalize responses based on a training set with the correct 
responses indicated. Unsupervised learning tries to categorize the inputs based on their similarities. 
Note that unsupervised learning does not assume that we have already identified categories and, 
in fact, comes up with categories for classifying data points.  

Following Axiom III, our research uses two unsupervised and three supervised learning 
techniques for different aspects of the SHM problem. The results of machine learning provide a 
more sophisticated level that will allow us to look at the problem of damage identification. We 
may then address a multitude of issues and provide diagnoses of the problems. The unsupervised 
learning techniques are k-means and self-organizing maps (SOM). Supervised learning techniques 
are support vector machines (SVM), naive Bayes classifiers, and feed-forward neural networks 
(FNN). For each technique except SOM, we tested a version with principal component analysis 
(PCA) as a frontend to reduce the dimensionality of the data (usually to three principal 
components), and we tested another version without PCA. The objective is to explore these 
techniques and note their characteristics so that various combinations of them may be used 
appropriately in various circumstances.  

The approach followed here can be generalized for exploring the characteristics of 
machine-learning techniques for monitoring various kinds of structures. One must first determine 
what signals are appropriate for monitoring the structures, (For example, acoustic signals are 
appropriate for metallic structures while signals propagated through optical fiber are appropriate 
for concrete structures.) One then determines the sensor and communication infrastructure. 
Finally, as per this paper, one determines the characteristics of various supervised and 
unsupervised learning techniques for monitoring the structures in question (given the signals and 
infrastructure chosen). Admittedly, the repertoire of techniques explored here is far from complete, 
but we have included the ones most often encountered in structural health monitoring.  

The remainder of this paper is organized as follows. The next section looks into previous 
work in machine learning for SHM, and Section 3 provides an introduction to SHM. Section 4 
presents our approach, Section 5 presents our results, and the last section concludes. 
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8.2 Previous Work in machine learning for  

Most previous work on machine learning for SHM has targeted bridges; we consider 
mature, representative work in this area and then turn to research that has targeted aircraft, which 
is our domain. Figueiredo and his colleagues performed an experiment on bridges that used four 
accelerometer sensors [3]. For each test of state conditions, the features were estimated by using a 
least squares technique applied to time-series from all four sensors and stored into feature vectors.  
They used four machine learning techniques in an unsupervised learning mode: 1) auto-associative 
neural network (AANN), 2) factor analysis (FA), 3) singular value decomposition (SVD), and 4) 
Mahalanobis squared distance (MSD).  First the features from all undamaged states were taken 
into account. Then those feature vectors were split into training and testing sets.  In this case, a 
fed-forward neural network was used to build-up the AANN-based algorithm to perform mapping 
and de-mapping. The network had 10 nodes in each of the mapping and de-mapping layers and 
two nodes in the bottleneck layer. The network was trained using back-propagation. The AANN- 
and MSD- based algorithms performed better at detecting damage.  The SVD- and FA- based 
algorithms performed better at avoiding false indications of damage. 

Tibaduiza and his colleagues [TTM2013], in investigating SHM for aircraft fuselages, 
made use of multiway principal component analysis (MPCA), discrete wavelet transform (DWT), 
squared prediction error (SPE) measures and a self-organizing map (SOM) for the classification 
and detection of damage.  Each PCA model contains 66 percent of whole data set from the 
undamaged structure. The remaining 34 percent plus 80 percent of the damage structure to be 
classified by the SOM. This approach had an accuracy of 99.88%. 

Esterline and his colleagues [1] (also targeting aircraft) ran an experiment with two 
approaches. Their first approach used as training instances experimental data with eighteen 
traditional acoustic emission features to train a SVM, while their second approach used six 
correlation coefficients between basic modes and waveforms from simulation data also to train a 
SVM. The SVM with the second approach performed as well or better than the SVM using the 
first approach, suggesting the superiority of a set of correlation coefficients over a substantial set 
of traditional acoustic emission features for learning to identify the source of acoustic emissions. 

8.3 Structural health monitoring 

In general, damage is defined as change introduced into a system that will adversely affect 
its current or future performance [5]. This idea of damage is meaningless without a comparison 
between two states of the system, one assumed to be the unloaded and undamaged state. For 
mechanical structures, damage can be defined more narrowly as change to the material and/or 
geometric properties. SHM provides real-time information on the integrity of the structure. It 
allows better use of resources than scheduled maintenance, which may take place when there is no 
need. 

In characterizing the state of damage in a system, we can ask whether there is damage, 
where in the system it is, what kind of damage it is, and how severe it is. Damage prognosis is the 
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estimation of the remaining useful life of a mechanical structure [6]. Such an estimation may be 
the output from models that predict behavior.  
The field of SHM has matured to the point where several fundamental axioms or general principles 
have emerged. Worden and his colleagues [2] suggest seven axioms for SHM. The following are 
the axioms most relevant to this paper. 

Axiom III: Identifying the existence and location of damage can be done in an unsupervised 
learning mode, but identifying the type of damage present and the damage severity can 
generally only be done in a supervised learning mode.  

Axiom IVa: Sensors cannot measure damage. Feature extraction through signal processing and 
statistical classification is necessary to convert sensor data into damage information.  

Axiom IVb: Without intelligent feature extraction, the more sensitive a measurement is to 
damage, the more sensitive it is to changing operational and environmental conditions.  

Axiom V: The length- and time-scales associated with damage initiation and evolution dictates 
the required properties of the SHM sensing system. 

Axiom III is particularly relevant here. Supervised learning together with either analytic models 
or data from the structure can be used to determine damage type and extent. Statistical methods 
may also be used.  

8.4 Approach 

Our overall architecture involves a multiagent system where the agents are typically 
proxies for computation- or communication-intensive techniques. These techniques are executed 
on one or more high-performance platforms structured as a workflow engine. Wooldridge defined 
an agent as an autonomous, problem-solving, computation entity that is capable of effectively 
processing data and functioning singularly or in a community with in dynamic and open 
environments [7]. The agents in our system negotiate to determine what techniques in what 
combinations will be used in a monitoring task, thus determining a workflow that is executed on 
the workflow engine. The multiagent system is thus the “brains” and the workflow engine the 
“brawn” of our SHM system. Much of the intelligence here is finding the appropriate techniques 
for the situation at hand. In one situation, we might want a given task done quickly with only rough 
accuracy, while in another situation accuracy may be paramount and speed of only secondary 
importance. Regarding the results of machine learning for SHM, we would like an assortment of 
classifiers to provide a range of possibilities for the diversity of situations that arises in SHM.  

Machine learning is generally facilitated by reducing the dimensionality of the data, and 
this is certainly the case here. For this, we use PCA [8]. PCA is an algorithm that centers the data 
by subtracting off the mean then choosing the eigenvector of the data covariance matrix with the 
largest eigenvalue [8]. It places an axis in that direction, and then incrementally and similarly 
places the other axes orthogonally to the first in a way maximizing the possible variation. The 
number of axes is chosen to be fewer than the number of axes (dimensionality) of the original data 
set. The data is thus reduced in dimensionality while most of the variation is retained.  

Recall that the unsupervised learning techniques we investigated are k-means and SOM. 
The k-means algorithm [8] classifies n observations into k clusters. The value of k is set by the 
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user. The cluster centers are distributed randomly at first, and a data point is assigned to the cluster 
nearest it in terms of Euclidean distance. Each cluster center is then updated to be the average of 
the points assigned to it. The data points are reassigned to clusters and the cluster means are 
recomputed until the distance of the data points and the centers are within some threshold or some 
maximum number of iterations is reached.  

A SOM [8] is a type of neural network used to produce a low-dimensional, discretized 
representation of the space of the training data. A SOM identifies features across the range of input 
patterns. Neurons compete to be activated, and only one is activated at any one time. A SOM needs 
very little to no preliminary data cleansing [9]. 

Recall that the supervised learning techniques we investigated are FNN, SVM, and naïve 
Bayes classifiers. An artificial neural network (ANN) is a computational model based on the 
structure and functions of a biological neural network [8]. In a FNN, or multilayer perceptron, 
input vectors are put into input nodes and fed forward in the network. The inputs and first-layer 
weights will determine whether the hidden nodes will fire. The output of the neurons in the hidden 
layer and the second-layer weights are used to determine which of the output layer neurons fire. 
The error between the network output and targets is computed using the sum-of-squares difference. 
This error is fed backward through the network to update the edge weights in a process known as 
back propagation.  

SVMs rely on preprocessing to represent patterns in the data in a high dimension, usually 
higher than the original feature space, so that classes that are entangled in the original space are 
separated by hyper-planes at higher dimension. Training a SVM [9] involves choosing a (usually 
nonlinear) function that maps the data to a higher-dimensional space.  Choices are generally 
decided by the user’s knowledge of the problem domain.  SVMs can reduce the need for labeled 
training instances.  

Naïve Bayes classifiers form a supervised learning technique that belongs to a family of 
classifiers based on Bayes’ theorem with a strong assumption about the independence of features 
[9]. Assumptions and the underlying probabilistic model allow us to capture any uncertainty about 
the model.  This is generally done in a principled way by determining the probabilities of the 
outcomes.  Bayes classifiers were introduced to solve diagnostic and predictive problems.  
Bayesian classification provides practical learning through the use of algorithms, prior knowledge, 
and observation of the data in combination.  A Gaussian naïve Bayes classifier assumes that the 
conditional probabilities follow a Gaussian or normal distribution. 

8.5 Results 

The learning techniques were run on a machine running Windows 7 64-bit operating 
system with a 2.4 GHz quad core processor and 16 GB of RAM. Software from scikit-learn [10] 
was used for PCA, k-means, SVM, and Gaussian naïve Bayes classifiers. Software from PyBrain 
[11] was used for the FNN, and software from Weka [12] was used for the SOM. Weka is written 
in Java while scikit-learn and PyBrain are written in Python. We recorded the time taken by the 
classifiers produced by each technique to classify the data points in our test set. For the SOM, this 
involved executing Java code, while for the others Python code was run. We first present the results 
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for the supervised learning techniques, and then we present the results for the unsupervised 
learning techniques.  

4.5.1 Supervised-Learning Results 

To compare supervised learning techniques, we used the classification accuracy. The 
classification accuracy is the number of samples classified correctly over the number of samples 
in the dataset. 

We ran a SVM with four different types of kernel functions: linear, radial basis (RBF, with 
 = 0.5), and polynomial. Table 1 displays the accuracy that which our SVMs classified the 1169 
data points in the test set mentioned above. The SVM was also trained with a PCA frontend and 
run on the same data. Table 2 displays the resulting classification accuracy. 

 
Table 1: The classification accuracy of the SVM 
Kernel Linear Radial 

Basis 

Polynomial 

Accuracy 0.326 0.286 0.714 

 
Table 2: The classification accuracy of the SVM with PCA 

Kernel Linear RBF Polynomial 

Accuracy 0.675 0.287 0.292 

 
A Gaussian naïve Bayes classifier was trained and run with and without PCA. Table 3 

shows the resulting classification accuracy. 
 

Table 3: The accuracy of the Gaussian naive Bayes classifier 
Technique Gaussian NB Gaussian NB w/ 

PCA 

Accuracy 0.714 0.287 

A FNN classifier was trained and run with and without PCA. Table 4 shows the resulting 
classification accuracy. 

 
Table 4: The classification accuracy of the FNN 
Technique FNN FNN with PCA 

Accuracy 0.9996 0.9996 

Out of the four types kernel functions the SVM with a polynomial kernel function 
performed the best without PCA but the SVM with a linear kernel function performed the best 
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with PCA. The Gaussian naïve Bayes performed well without PCA but this inverted with PCA, 
but the FNN performed well with and without PCA. 

Table 5 and 6 shows the time for each of the kernel functions of our SVM with and without 
PCA. Out of the four kernel functions used, the radial basis function performed the fasted but not 
as accurately without PCA. But with PCA, the polynomial kernel function performed faster than 
the other function, but was less accurate than the linear kernel. 

 
Table 5: Timing of the SVM kernel functions without PCA 

Kernel Linear Radial 

Basis 

Polynomial 

Timing 18 8 12 

 
Table 6: Timing of the SVM kernel functions with PCA 

Kernel Linear RBF Polynomial 

Timing 18 8 3 

 
Table 7 shows the timing in milliseconds for the rest of our supervised learning techniques 

with and without PCA. Thus, the fastest classifier (Gaussian naïve Bayes with PCA) is also the 
least accurate, and the most accurate classifier (FNN with and without PCA) is also the slowest. 

 
Table 7: Timing of the rest of our supervised learning techniques with and without PCA 

Technique Gaussian NB Gaussian NB 

with PCA 

FNN FNN with PCA 

Timing 19 1 450 470 

4.5.2 Unsupervised-Learning Results 

Regarding unsupervised learning techniques, we first ran k-means clustering without PCA 
with k equal to 4, 5 and 6. Then we ran k-means clustering with PCA with k again equal to 4, 5 
and 6. For all values of k, with and without PCA, the k-means classifiers took very nearly 1 
millisecond, with very little variation, to classify all 1169 data points in our test set. Figures 1-3 
show the clusters produced when k equals 4, 5, and 6 (respectively) and PCA is used to reduce the 
data to three dimensions. 
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Figure 1: k-means with 4 clusters with PCA 

 
 Figure2: k-means with 5 clusters with PCA 

 
Figure 3: k-means with 6 clusters with PCA 

We ran a SOM with 4, 5 and 6 neurons. Table 7 shows the time (in milliseconds) it took 
each of the SOM instances to classify all 1169 data points in our test set. Clearly, the SOM took 
much longer to classify data points than did the k-means classifiers. 

  
Table 7: Timing of the SOM 

Technique SOM 4 SOM 5 SOM 6 
Time 8640 ms 12240 ms 24170 ms 
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The SOM with four output neurons gave four particularly sharp clusters. Such clustering 
can be anticipated given our experimental set-up, as we expect signals from four different sources. 
First of all, there are signals from the crack growth itself, but crack growth deeper in the specimen 
produces waveforms with rather different characteristics from those produced on the surface, and 
this difference is enough to pull the crack data into two distinct clusters. Next, there is friction 
where the specimen is attached, accounting for a third cluster. Finally, the electrical environment 
produced a consistent kind of noise, giving rise to a fourth cluster. The k-means classifier with k 
= 4, whether with or without PCA, identified four similar clusters, but they were much less distinct. 
This suggests that, in some situations at least, the greater accuracy of the SOM may be worth the 
wait.  

8.6 Conclusion 

This paper reports on work that is part of our development of an agent-based structural 
health monitoring (SHM) system. The data used are acoustic signals, and one attempts to classify 
these signals according to source, those associated with crack growth being particularly significant.  
The agents are for the most part proxies for communication- and computation-intensive 
techniques. Given a situation of interest, they negotiate to determine a pattern of techniques for 
understanding the situation. Such a pattern determines a workflow. The agents respond in an 
intelligent way by determining a constellation of techniques appropriate for the situation at hand. 
It is critical that the system have a repertoire of classifiers with different characteristics so that a 
combination appropriate for the situation at hand can generally be found.  

Following Worden and his colleagues [2], we use unsupervised learning for identifying the 
existence and location of damage but supervised learning for identifying the type and severity of 
damage. Our objective at this stage is to explore various machine-learning techniques and note 
their characteristics so that various combinations of them may be used appropriately in various 
circumstances The supervised learning techniques investigated are support vector machines 
(SVM), naive Bayes classifiers, and feed-forward neural networks (FNN). The unsupervised 
learning techniques investigated are k-means (with k equal to 4, 5, and 6) and self-organizing maps 
(SOM, with 4, 5, and 6 output neurons). For each technique except SOM, we tested a version with 
principal component analysis (PCA) as a frontend to reduce data dimensionality to three principal 
components, and we tested another version without PCA.  

Turning to the results, first of all for the supervised learning techniques, FNN with or 
without PCA was the most accurate and the slowest while naïve Bayes without PCA was the 
second most accurate and second slowest. Indeed, FNN is much more accurate and much slower 
than even naïve Bayes without PCA: 0.9996 vs. 0.71 and 470 ms to process the 1169 samples vs. 
19 ms. SVM with a polynomial kernel function and without PCA was just as accurate as naïve 
Bayes without PCA (0.71) but faster (12 ms to process the 1169 samples). Some of techniques 
were so inaccurate as not to be useful: SVM with an RBF kernel function (with and without PCA), 
naïve Bayes with PCA, and SVM with a polynomial kernel function and PCA all had accuracies 
of only about 0.29. SVM with a linear kernel function was quite slow (18 ms with and without 
PCA) and straddled the middle of the accuracy range: PCA here increased accuracy immensely: 
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0.68 vs. 0.33. Regarding unsupervised learning techniques, k-means classified all data points in 
our test set in about 1 millisecond regardless of the value of k and whether PCA was used. SOM 
took much longer, in the range of 10-20 seconds, increasing significantly with increasing number 
of output neurons. The much greater running time, however, might be compensated for as there is 
reason to think that SOM provides clusters that are more distinct and meaningful than those 
provided by k-means. Note that PCA sometimes improves accuracy and sometimes reduces it; it 
results in faster classification in one case and no significant change in run time in the others. This 
suggests that reducing data dimensions to three as we did with PCA can often obscure information 
needed for classification. 

We can consider combinations of classifiers trained in unsupervised and supervised 
learning mode, the first to find existence and location of damage and then the second to determine 
the extent and type of damage. In a practical situation, we look at a large number of events and 
watch for when hundreds are classified as originating from crack growth. So we can tolerate a 
certain amount of inaccuracy. Cracks, however, grow over months, so generally processing speed 
is not an issue for continuous monitoring, and it would be natural to use SOM then FNN. But if an 
entire aircraft or other extensive structure is scanned periodically, processing speed might be 
multiplied by factors in the hundreds, and we might consider, for example, k-means and SVM with 
a polynomial kernel function and without PCA. 

These results are generally encouraging for our multiagent system as they reveal significant 
differences in the characteristics of the machine learning techniques investigated. For both 
supervised and unsupervised techniques, there is a trade-off between accuracy and fast runtime, 
and this trade-off can be exploited by the agents in finding a combination of techniques appropriate 
for a given situation. We indicated how the approach followed here can be generalized for 
exploring the characteristics of machine-learning techniques for monitoring various kinds of 
structures. 

Future work will include investigation of the physical reality behind the clusters found with 
unsupervised learning. We are tagging the waveforms as they are classified so that we may get full 
information on the waveforms that end up in each cluster. Future work will also consider which 
classifiers work best in combination with which other classifiers.  

Finally, we will investigate various approaches to dimensionality reduction. We will 
investigate what dimensionalities provided by PCA are most efficient in various situations. And 
we will consider alternatives to PCA. We are looking at coalition game theory as a way to select 
combinations of feature that do the best job distinguishing the data by class. We are also 
considering GEFeWS (Genetic and Evolutionary Feature Selection and Weighting), which evolves 
linear combinations of feature values (over a certain threshold) that optimize classification 
accuracy. 
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PART 9: A MULTIAGENT-BASED STRUCTURAL HEALTH MONITORING SYSTEM 

Abstract 

The overall architecture involves motes (battery-powered devices with processors, 
memory, attached sensors. And wireless communication capability) that feed data streams to 
workstations on which a multiagent system allocates resources to interpret and fuse the data.  Agent 
services are made available as Web services, resulting in an end-to-end architecture, extending 
from the sensors to the users consuming the information to support decisions.  Prototypes have 
been developed for interpreting individual datastreams, for hierarchical integration of monitoring 
agents, and for publishing status and alerts on the Web and rendering them on a user’s 
“dashboard.”   

9.1 Introduction 

The overall architecture involves motes (small battery-powered devices with processors, 
memory, and wireless communication capability and that can be equipped with a variety of 
sensors) that feed data streams to workstations on which a multiagent system allocates resources 
to interpret and fuse the data.  An agent is autonomous and generally capable of reactive and 
proactive behavior.  Agents communicate via a special agent communication language and 
negotiate to determine what tasks are carried out and how they are carried out in achieving system-
wide goals.  In this architecture, most agents serve as advocates for data- or communication-
intensive techniques.  Once the agents have negotiated an approach to a task, processes carrying 
out the respective techniques are activated in a workflow.  This results in a very flexible and 
responsive system (due to the agents) that processes data efficiently (thanks to the workflow).  
Certain agents perform specialized tasks, such as feature extraction and classification of events 
based on extracted feature vectors.  Other agents, called monitor agents, coordinate activities or 
advocate for analytic techniques.  Negotiation among monitor agents results in a hierarchy where 
agents higher up monitor parts of the structure that cover several of the parts monitored by agents 
lower down in the hierarchy.  This hierarchy reconfigures itself as the parts of the structure 
requiring additional attention vary over time.  Certain agent services are made available as Web 
services, which are available to users or analytic software running on remote sites, and agents can 
push alerts to users who subscribe to them.  This results in an end-to-end architecture, extending 
from the sensors to the users consuming the information to support decisions.  

The following begins with a section describing an initial prototype that involves a single 
datastream and a single monitor agent that finds agents to perform subtasks in interpreting the 
events whose effects are recorded in the datastream.  This section also outlines the work done with 
feature extraction and machine learning (for classifying events given feature vectors).  The next 
section describes a simple prototype with a very small hierarchy of monitor agents.  This is 
followed by a section outlining how the multiagent monitoring system makes Web services 
available.  Next, we describe a prototype dashboard for displaying to a user the information 
provided by the Web services as well as alerts and warnings sent by the agents using a messaging 
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system.  The last section is a brief summary of miscellaneous topics addressed in the past that are 
still of interest.  

9.2 A prototype for handling datastream 

An initial prototype (see Figure 1) handles just one stream of data from sensor mote and 
thus requires just one monitor agent to find agents to perform its subtasks [7].  A LabVIEW 
application superposes several decaying sinusoids and sends the result over a data socket to an 
Imote2 mote, which transmits the data stream wirelessly to an Imote2 connected to the workstation 
hosting the multiagent system.  (The motes are programmed in nesC.)  A special data agent controls 
this data stream and sends control signals to the mote from which the data stream originates.  This 
prototype assumes that one or more feature extractors will extract from the data stream feature 
vectors that will be input to a classifier to produce a stream of classifications of events detected by 
the simulated sensor.  

 

 

 
Figure 1: A prototype for handling one data stream. 

 

Figure 1 has a square icon labeled “Feature Extractor” that stands for the collection of 
feature-extraction techniques available.  There is an arrow from this icon to a round icon labeled 
“F”; this is the collection of feature-extraction agents, each advocating for one of the feature-
extraction techniques.  Similarly, there is a square icon labeled “Classifier” that stands for the 
classifier techniques available and an arrow from it to a round icon labeled “C”, standing for the 
collection of corresponding classifier agents.  The round icon on the right labeled “D” stands for 
the data agent; the arrow into it represents the datastream it controls (which does not literally “pass 
through” it).  The round icon labeled “M” (above the icons for the feature-extraction and classifier 
agents) stands for the monitor agent tasked with classifying events detected by the sensors that are 
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the source for this data stream.  Under different circumstances, different ways of classifying these 
events are appropriate.  The input arrow from the user-interface icon to the 

Monitor-agent icon indicates input specifying context-related attributes of the 
classification task.  The arrow in the opposite direction indicates classification-related information 
relevant to the current context; this is generally just a time-stamped classification but could also 
be an alert or information about the state of the sensors or of the interpretation of the datastream.  
The two-headed arrow between the monitor-agent icon and the data-agent agent indicates direct 
communication between the two agents, allowing the monitor agent to track the state and activity 
of the data agent and the datastream, and allowing it to influence the data agent’s control of the 
mote and sensors.  

The two-headed arrow between the monitor-agent icon and the icon for the classifier agents 
indicates use of the contract net protocol to allow the monitor agent to find a classifier agent for 
the classify-given-feature-values subtask of the classify-given-raw-data task in the current context.  
The contract net protocol is a widely used announce-bid-award problem-solving protocol.  An 
agent with a task (or problem) decomposes it into subtasks (or subproblems) for each of which it 
becomes the manager.  For a given subtask, the manager broadcasts an announcement containing 
information about the subtask.  An agent receiving this message has the option of sending a bit 
with information on how it would perform the subtask.  The manager then evaluates the bids and 
sends an award message (possibly including further information) to the agent submitting the 
winning bid (which becomes the contractor for the subtask) and reject messages to the other 
bidders.  Note that this is a simple form of negotiation (the manager and contractor select each 
other), keeping with the autonomy of agents.  

The two-headed arrow between the monitor-agent icon and the icon for the feature-
extraction agents likewise indicates use of the contract net protocol to allow the monitor agent to 
find one or more feature-extraction agents for the feature-extraction subtask of the classify-given-
raw-data task.  At this point, the subtask is qualified not only by the current context but also by the 
classifier already selected: the feature extractor(s) must provide values for the features used by the 
selected classifier.  The way the contract net protocol proceeds here is slightly more involved than 
the way it proceeds with finding a classifier since the monitor might have to award the subtask to 
more than one feature extractor since there may be no single feature extractor that provides values 
for all features required by the classifier.  

Once a classifier agent and one or more feature-extraction agents have been found for the 
current context, the monitor agent sends a message to the workflow system to set up a workflow 
involving the techniques advocated by these agents.  It also sends a message to the data agent.  The 
stream of time-stamped event classifications flows into the monitor agent, which processes it as 
appropriate.  

The single-monitor, single-datastream prototype described above in fact just communicates 
the LabVIEW-generated signal and, downstream, a sequence of integers through a workflow 
consisting of stubs corresponding to the agents selected in the instances of the contract net protocol.  
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This was appropriate as the point of the prototype was to implement the agents and have them 
negotiate as described above.  

Current work involves implementing the workflow system, allowing it to activate and 
coordinate instances of the techniques, and creating an interface so that agents and other external 
actors may specify workflows along with their inputs and outputs.  The current version allows 
simple workflows to be set up semi-automatically.  

The software for the classification techniques is written in Python and uses the parameters 
established by machine learning techniques that were implemented last year.  Training for a given 
technique is done offline with stored data, and the learned parameters are written to a file.  When 
the technique is needed for classifying live data, the classifying software reads these parameters.  
The machine learning techniques used have generally been paired with code that uses principal 
component analysis (PCA) to reduce the dimensionality of the feature space.  When classification 
is done on live data, the linear transformations used with a given machine-learning technique must 
be used when the corresponding classifier is used on live data.  Therefore, the coefficients for these 
linear transformations are also written to file when training is complete and read when the 
corresponding classification technique is used.  We think of a given classification technique and 
the accompanying PCA-derived linear transformations as a single unit, advocated for by a given 
classifier agent.  

The machine learning techniques covered include neural networks and techniques for 
unsupervised learning, including k-means algorithms and self-organizing maps.  The website for 
the Marsland machine-learning text [6] provides implementations in Python.  More sophisticated 
Python implementations of a vast range of machine-learning techniques are provided online by at 
the scikit-learn site [3], which is supported by Google and INRIA.  The open source code is being 
enhanced for our specific purposes.  The open source code with which we start uses Python’s 
NumPy numerical library and relevant modules from Python’s SciPy library.   

Feature extraction techniques are being developed using NumPy and SciPy.  Some features 
(such as rise time and amplitude) are easily derived from the time-domain signal.  Most of the 
features used by our mechanical engineering collaborators fall into this category. Our collaborators 
also find the correlations between an input signal and a set of signal templates as a kind of finger 
print of the input signal; this has been prototyped.  We will also explore extracting features from 
the frequency-domain representation of a signal, although such features are not used by our 
collaborators.  We are also looking at Kalman for filter estimating state variables from times series 
of feature values  

9.3 A prototype with hierarchy of monitor agents 

When multiple data streams are available from various parts of the monitored structure, 
possible interactions and vulnerabilities must be considered.  In addition, computational resources 
might not be adequate to maintain a consistently high level of interpretation of all datastreams.  
Finally, meaningful interpretation may depend on fusing data from several streams.  

 



115 
 

 
Figure 2: A prototype with a simple monitor-agent hierarchy.  The subordinates of only one of the 

bottom-level monitor agents are shown. 

The ideal here is to arrange monitor agents in a flexible hierarch where an agent higher up in 
the hierarchy covers a region that encompasses the regions covered by those immediately below 
it.  If part of the monitored structure warrants more scrutiny, it should be possible for the hierarchy 
to restructure itself so that more agents address the part in question.  

We have developed a prototype to set up such a hierarchy [2].  Again, the contract net protocol 
is used, this time not to allocate to agents the subtasks of a task but rather to allocate to agents 
responsibility to monitor subregions of a monitored region.  Future work will use a bond-graph 
representation of the structure and information on structural members and their parts to guide 
allocation of agent responsibilities.  

Once a hierarchy of monitor agents is established, each monitor agent will inspect alerts 
and warnings sent up to it and forward up the hierarchy and generate alerts and warnings when 
various situations of note fall under its purview.  Each agent will also pass down the hierarchy 
context relevant to its subordinates.   

 
Web Services: The Web Services Integration Gateway (WSIG) [5] agent is a JADE plug-in 
developed to connect the Web services domain with JADE platforms. This gateway enables a Web 
service to invoke an available agent service. This interconnection also allows complex 
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compositions of agent services and Web services to be created, managed, and administered by the 
DF (directory facilitator) agent in the JADE framework. The WSIG architecture is composed of 
two elements: the WSIG servlet and the WSIG gateway agent.  Current implementation [8] makes 
several agent services available as Web services, and the list of such services being considered 
includes the following.  

 Status of the overall structure, status of the components (hierarchical)  
 Information about services available in the context of a given monitor agent (or component)  
 Values of specific features from specific data streams (sensors) 
 Results of analytic routines applied to values from the sensors 
 Histories of status and specific feature values (for given sensors) (e.g., over the last 4 

minutes or over a 3 month period) 
 Manufactures’ nominal values of components (static; lookup) 
  Alert service that displays via the dashboard (Qpid—only tangential here) 

 

 
 

Figure 3: A snapshot of the dashboard prototype 

The WSIG-provided Web services are being supplemented for communicating alerts and 
warnings with messaging capability provided by the Queue Processor Interface Daemon (Qpid) 
[1], an Apache capability enabling entities to communicate with each other via queues called 
topics.  Qpid is an implementation of the Advanced Message Queuing Protocol (AMQP).  A client 
that subscribes to a “topic” provided by a server is automatically provided with any message that 
the server puts on that topic.  This provides “push” communication (initiated by the server) in 
contrast to the “pull” communication (initiated by the server) of Web services.  
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Dashboard: The dashboard [4] allows the user to view the status of system components in a 
meaningful and efficient way—see Figure 3.  XML data documents that are provided by the sensor 
web are converted via XSLT stylesheets to HTML documents that can be rendered an a variety of 
devices, including workstations to hand-held devices.  There are three parts on the dashboard: a 
parts hierarchy, the monitored status of a part, and the value of a selected feature of the monitored 
part.  The parts hierarchy is for selecting what part is to be monitored at certain time intervals.  In 
the Monitored Status column, values for the monitored part are listed followed by the values of 
interest for the subparts in brackets.  These values denote categories identified by the classification 
agents.  The time interval (in seconds) between values is specified in a textbox. Finally, in the 
Monitored Feature column, the user selects a feature of the signal analyzed for the selected part 
and interval between samples.  Ajax technology is being used to update fields in the dashboard 
window without the need to update the entire window.  In the current prototype, an alert pushed 
out by the multiagent system to dashboard users causes an alert box to appear.  Future work will 
incorporate alerts in a meaningful way into the layout of the dashboard.  Future work will also 
allow some control of the monitor system through the dashboard.  
 
Miscellaneous Topics: The Gaia agent-oriented analysis and design methodology [9] was used to 
come up with designs for agent roles, and it will continue to be used.  We are exploring elements 
of coalition game theory (see Chapter 13 of [10]) as a possible complement to the contract net 
protocol.  Coalition game theory investigates settings in which groups of agents (“coalitions”) may 
enforce cooperative behavior.  The contract net protocol essentially results in a greedy approach 
to finding agents to perform subtasks: the best agent for the subtask first announced is awarded 
that subtask even though an overall better allocation of subtasks to agents might award a different 
subtask to that agent.  Coalition game theory avoids this greedy strategy by taking all subtasks into 
consideration at once.   

Finally, we continue to experiment with a variety of wireless sensor motes and customized 
hardware configurations.  We are also continuing to experiment with Agilla mobile agents on more 
advanced motes. 
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